如圖,已知拋物線
:
和⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,分別交拋物線為E、F兩點,圓心點
到拋物線準(zhǔn)線的距離為
.![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)當(dāng)
的角平分線垂直
軸時,求直線
的斜率;
(Ⅲ)若直線
在
軸上的截距為
,求
的最小值.
(1)
;(2)
;(3)
.
解析試題分析:本題考查拋物線、圓的標(biāo)準(zhǔn)方程以及直線與拋物線、圓的位置關(guān)系,突出解析幾何的基本思想和方法的考查:如數(shù)形結(jié)合思想、坐標(biāo)化方法等.第一問,據(jù)點
到準(zhǔn)線
的距離為
,直接列式求得
,得到拋物線的標(biāo)準(zhǔn)方程;第二問,據(jù)條件
的角平分線為
,即
軸,得
,而
,
關(guān)于
對稱,所以
,利用兩點斜率公式代入得
,所以求得
;第三問,先求直線
的方程,再求
的方程,令
,可得到
,利用函數(shù)的單調(diào)性求函數(shù)的最值.
試題解析:(1)∵點
到拋物線的距離為
,
∴
,即拋物線
的方程為
. 2分
(2)法一:∵當(dāng)
的角平分線垂直
軸時,點
,∴
,
設(shè)
,
∴
, ∴
,
∴
,∴
. 6分
法二:∵當(dāng)
的角平分線垂直
軸時,點
,∴
,可得
,
,∴直線
的方程為
,
聯(lián)立方程組
,得
,
∵
∴
,
.
同理可得
,
,∴
. 6分
(3)法一:設(shè)
,∵
,∴
,
可得,直線
的方程為
,
同理,直線
的方程為
,
∴
,
,
∴直線
的方程為
,
令
,可得
,
∵
關(guān)于
的函數(shù)在
單調(diào)遞增, ∴
. 12分
法二:設(shè)點
,
,
.
以![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
,
、
是雙曲線的左右頂點,
是雙曲線上除兩頂點外的一點,直線
與直線
的斜率之積是
,
求雙曲線的離心率;
若該雙曲線的焦點到漸近線的距離是
,求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,
為坐標(biāo)原點,如果一個橢圓經(jīng)過點P(3,
),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,
、
是其左右焦點,離心率為
,且經(jīng)過點
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若
、
分別是橢圓長軸的左右端點,
為橢圓上動點,設(shè)直線![]()
斜率為
,且
,求直線
斜率的取值范圍;
(3)若
為橢圓上動點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
:
的離心率為
,以橢圓
的左頂點
為圓心作圓
:
,設(shè)圓
與橢圓
交于點
與點
.(12分)![]()
(1)求橢圓
的方程;(3分)
(2)求
的最小值,并求此時圓
的方程;(4分)
(3)設(shè)點
是橢圓
上異于
,
的任意一點,且直線
分別與
軸交于點
,
為坐標(biāo)原點,求證:
為定值.(5分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知橢圓
的左焦點為
,且橢圓
的離心率
.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的上下頂點分別為
,
是橢圓
上異于
的任一點,直線
分別交
軸于點
,證明:
為定值,并求出該定值;
(3)在橢圓
上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標(biāo)及對應(yīng)的
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,點
為動點,
、
分別為橢圓
的左、右焦點.已知
為等腰三角形.![]()
(1)求橢圓的離心率
;
(2)設(shè)直線
與橢圓相交于
、
兩點,
是直線
上的點,滿足
,求點
的軌跡
方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓中心在坐標(biāo)原點,
是它的兩個頂點,直線
與直線
相交于點D,與橢圓相交于
兩點.
(Ⅰ)若
,求
的值;
(Ⅱ)求四邊形
面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com