(本小題滿分12分)
設函數(shù)
。
(1)當a=1時,求
的單調(diào)區(qū)間。
(2)若
在
上的最大值為
,求a的值。
(1)
為增區(qū)間,
為減函數(shù)。
(2)
a
解析試題分析:對函數(shù)求導得:
,定義域為(0,2)
(1)當a=1時,令![]()
![]()
當
為增區(qū)間;當
為減函數(shù)。
(2)當
有最大值,則必不為減函數(shù),且
>0,為單調(diào)遞增區(qū)間。
最大值在右端點取到。
.
考點:利用導數(shù)研究函數(shù)的單調(diào)性.
點評: 本題考查了利用導數(shù)求函數(shù)的單調(diào)區(qū)間的方法,已知函數(shù)的單調(diào)區(qū)間求參數(shù)范圍的方法,體現(xiàn)了導數(shù)在函數(shù)單調(diào)性中的重要應用;不等式恒成立問題的解法,轉(zhuǎn)化化歸的思想方法.
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
,且
.
(1)求
的值;
(2)若令
,求
取值范圍;
(3)將
表示成以
(
)為自變量的函數(shù),并由此,求函數(shù)
的最大值與最小值及與之對應的x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)
已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,試分別解答以下兩小題.
(。┤舨坏仁
對任意的
恒成立,求實數(shù)
的取值范圍;
(ⅱ)若
是兩個不相等的正數(shù),且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)
的定義域為
,其中a、b為任
意正實數(shù),且a<b。
(1)當A=
時,研究
的單調(diào)性(不必證明);
(2)寫出
的單調(diào)區(qū)間(不必證明),并求函數(shù)
的最小值、最大值;
(3)若
其中k是正整數(shù),對一切正整數(shù)k不等式
都有解,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
,
,其中
.
(1)若函數(shù)
是偶函數(shù),求函數(shù)
在區(qū)間
上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當
時,
在區(qū)間
上為減函數(shù);
(3)當
,函數(shù)
的圖象恒在函數(shù)
圖象上方,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
,曲線
在點
處的切線方程為
.
(1)求函數(shù)
的解析式;
(2)過點
能作幾條直線與曲線
相切?說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com