【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開(kāi)辟為水果園種植桃樹(shù),已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.![]()
(1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問(wèn)如何圍可使竹籬笆用料最省?
【答案】
(1)解:∵AP+AQ=200,
∴S=
≤
=2500
.
當(dāng)且僅當(dāng)x=y=100時(shí)取“=”.
∴當(dāng)x=y=100時(shí),可使得三角形地塊APQ的面積最大.
(2)解:設(shè)AP=x,AQ=y,則1x150+1.5y100=30000,
化為:x+y=200≥2
,可得xy≤10000.
∴PQ2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2﹣xy=40000﹣xy≥30000.
當(dāng)且僅當(dāng)x=y=100時(shí)取“=”.
即PQ≥100
.
∴當(dāng)且僅當(dāng)x=y=100時(shí),可使PQ取得最小值,即使用竹籬笆用料最。
【解析】(1)先求出三角形地塊APQ的面積,再利用基本不等式可得三角形地塊APQ的面積最大;(2)先利用余弦定理可得PQ2,再利用基本不等式可得PQ的最小值.
【考點(diǎn)精析】掌握基本不等式是解答本題的根本,需要知道基本不等式:![]()
,(當(dāng)且僅當(dāng)
時(shí)取到等號(hào));變形公式:![]()
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿(mǎn)足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年5月12日,國(guó)家統(tǒng)計(jì)局公布了《2013年農(nóng)民工監(jiān)測(cè)調(diào)查報(bào)告》,報(bào)告顯示:我國(guó)農(nóng)
民工收入持續(xù)快速增長(zhǎng).某地區(qū)農(nóng)民工人均月收入增長(zhǎng)率如圖1,并將人均月收入繪制成如
圖2的不完整的條形統(tǒng)計(jì)圖.
![]()
圖1 圖2
根據(jù)以上統(tǒng)計(jì)圖來(lái)判斷以下說(shuō)法錯(cuò)誤的是
A. 2013年農(nóng)民工人均月收入的增長(zhǎng)率是![]()
B. 2011年農(nóng)民工人均月收入是
元
C. 小明看了統(tǒng)計(jì)圖后說(shuō):“農(nóng)民工2012年的人均月收入比2011年的少了”
D. 2009年到2013年這五年中2013年農(nóng)民工人均月收入最高
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)O在
內(nèi),且滿(mǎn)足
,設(shè)
為
的面積,
為
的面積,則
=________.
【答案】![]()
【解析】由
,可得: ![]()
延長(zhǎng)OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,
如圖所示:
![]()
∵2
+3
+4
=
,
∴
,
即O是△DEF的重心,
故△DOE,△EOF,△DOF的面積相等,
不妨令它們的面積均為1,
則△AOB的面積為
,△BOC的面積為
,△AOC的面積為
,
故三角形△AOB,△BOC,△AOC的面積之比依次為:
:
:
=3:2:4,
.
故答案為:
.
點(diǎn)睛:本題考查的知識(shí)點(diǎn)是三角形面積公式,三角形重心的性質(zhì),平面向量在幾何中的應(yīng)用,注意重要結(jié)論:點(diǎn)O在
內(nèi),且滿(mǎn)足
,
則三角形△AOB,△BOC,△AOC的面積之比依次為:
.
【題型】填空題
【結(jié)束】
16
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線(xiàn)OP從OA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記
為
OP所經(jīng)過(guò)的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積
,那么對(duì)于函數(shù)
有以下三個(gè)結(jié)論:
①
;
②任意
,都有
;
③任意
且
,都有
.
其中正確結(jié)論的序號(hào)是__________. (把所有正確結(jié)論的序號(hào)都填上).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(2,1)的直線(xiàn)l的參數(shù)方程為
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=2cosθ,已知直線(xiàn)l與曲線(xiàn)C交于A(yíng)、B兩點(diǎn).
(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線(xiàn)OP從OA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記
為
OP所經(jīng)過(guò)的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積
,那么對(duì)于函數(shù)
有以下三個(gè)結(jié)論:
①
;
②任意
,都有
;
③任意
且
,都有
.
其中正確結(jié)論的序號(hào)是__________. (把所有正確結(jié)論的序號(hào)都填上).
![]()
【答案】①②
【解析】試題分析:①:如圖,當(dāng)
時(shí),
與
相交于點(diǎn)
,∵
,則
,
∴
,∴①正確;②:由于對(duì)稱(chēng)性,
恰好是正方形的面積,
∴
,∴②正確;③:顯然
是增函數(shù),∴
,∴③錯(cuò)誤.
![]()
考點(diǎn):函數(shù)性質(zhì)的運(yùn)用.
【題型】填空題
【結(jié)束】
17
【題目】化簡(jiǎn)
(1)![]()
(2)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下四個(gè)命題:①e
>2②ln2>
③π2<3π④
<
,正確的命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列
的通項(xiàng)公式為
(
,
),數(shù)列
定義如下:對(duì)于正整數(shù)
,
是使得不等式
成立的所有
中的最小值.
(1)若
,
,求
;
(2)若
,
,求數(shù)列
的前
項(xiàng)和公式;
(3)是否存在
和
,使得
?如果存在,求
和
的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com