欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)是定義在[-1,1]上的奇函數,且f(1)=1,若對任意的x,y∈[-1,1],且x+y≠0,都有(x+y)•[f(x)+f(y)]>0.
(1)判斷f(x)的單調性,并加以證明;
(2)解不等式$f({x+\frac{1}{2}})+f({2x-1})<0$;
(3)若f(x)≤m2-2am+2對任意的x∈[-1,1],m∈[1,2]恒成立,求實數a的取值范圍.

分析 (1)利用定義即可證明f(x)在[-1,1]上為增函數,
(2)由(1)可得關于x的不等式組,解得即可,
(3)方法一:即$m+\frac{1}{m}≥2a$對任意m∈[1,2]恒成立,則只需${({m+\frac{1}{m}})_{min}}≥2a$,m∈[1,2]即可,構造函數,求出函數的最值即可,
方法二:則只需(m2-2am+1)min≥0,m∈[1,2]即可.令h(m)=m2-2am+1,m∈[1,2],其函數圖象的對稱軸為m=a,分類討論,求出函數的最值.

解答 解:(1)f(x)在[-1,1]上為增函數.
證明:任取x1,x2∈[-1,1],且x1<x2,則x2-x1>0,
由題意知(x2-x1)•[f(x2)+f(-x1)]>0,
又∵f(x)為奇函數,
∴(x2-x1)•[f(x2)-f(x1)]>0,
∴f(x2)-f(x1)>0,
即f(x2)>f(x1),
∴f(x)在[-1,1]上為增函數.
(2)由題意及(1)知,$\left\{\begin{array}{l}-1≤x+\frac{1}{2}≤1\\-1≤1-2x≤1\\ x+\frac{1}{2}<1-2x\end{array}\right.$,
解得:$0≤x<\frac{1}{6}$.
故所求不等式的解集為:$\{x|0≤x<\frac{1}{6}\}$.
(3)由f(x)在[-1,1]上為增函數,知fmax(x)=f(1)=1.
由題意,得1≤m2-2am+2,即m2-2am+1≥0對任意m∈[1,2]恒成立,
法一:即$m+\frac{1}{m}≥2a$對任意m∈[1,2]恒成立,則只需${({m+\frac{1}{m}})_{min}}≥2a$,m∈[1,2]即可.
令$g(m)=m+\frac{1}{m}$,m∈[1,2],易證g(m)在[1,2]上是增函數,
所以gmin(m)=g(1)=2.
故2≥2a,即a≤1.
法二:
則只需(m2-2am+1)min≥0,m∈[1,2]即可.
令h(m)=m2-2am+1,m∈[1,2],其函數圖象的對稱軸為m=a
①當a≤1時,h(m)在[1,2]上是增函數,則hmin(m)=h(1)=2-2a.
∴由2-2a≥0得:a≤1,從而a≤1;
②當1<a<2時,${h_{min}}(m)=h(a)=-{a^2}+1$,
∴由-a2+1≥0得:-1<a<1,從而a無解;
③當a≥2時,h(m)在[1,2]上是減函數,則hmin(m)=h(2)=5-4a.
∴由5-4a≥0得:$a≤\frac{5}{4}$,從而a無解.
綜上所述,a的取值范圍為a≤1.

點評 本題考查了函數的單調性與奇偶性的判定以及應用問題,以及參數的取值范圍,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

15.$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{π}{2}}^{\frac{π}{2}}{x^3}dx-\int_1^2{({\frac{1}{x}-x})dx=}$8π+ln2-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設i是虛數單位,${i^7}-\frac{2}{i}$=( 。
A.-iB.-3iC.iD.3i

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.函數$f(x)=\frac{3^x}{{{3^x}+\sqrt{3}}}$,則$f(\frac{1}{2016})+f(\frac{2}{2016})+…+f(\frac{2015}{2016})+f(\frac{2016}{2016})$=1009-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.數列{(-1)n(2n-1)}的前2 016項和S2016等于(  )
A.-2 016B.2 016C.-2 015D.2 015

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,且$α-β=\frac{2π}{3}$,則$\overrightarrow a$與$\overrightarrow a+\overrightarrow b$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知等比數列{an}的首項為a1,公比為q,滿足a1(q-1)<0且q>0,則(  )
A.{an}的各項均為正數B.{an}的各項均為負數
C.{an}為遞增數列D.{an}為遞減數列

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知函數$f(x)=[x+\frac{3}{2}]$(取整函數),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,則f(g(π))的值為(  )
A.1B.0C.2D.π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:3x-2y+3$\sqrt{13}$=0,且雙曲線的一個焦點在直線l上,則雙曲線方程為(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1D.$\frac{5{x}^{2}}{16}$-$\frac{5{y}^{2}}{9}$=1

查看答案和解析>>

同步練習冊答案