分析 先由f(1)=0可以得到a+b=2,而根據(jù)$f(x)-f(\frac{1}{x})=lgx$可以得到$lg\frac{x(ax+b)}{a+bx}=lgx$,從而有$\frac{x(ax+b)}{a+bx}=x$,這樣便得到ax+b=a+bx,從而有a=b,帶入a+b=2即可求出a,b的值.
解答 解:f(1)=0;
∴$lg\frac{2}{a+b}=0$;
∴a+b=2;
由$f(x)-f(\frac{1}{x})=lgx$得,$lg\frac{2x}{a+bx}-lg\frac{\frac{2}{x}}{a+\frac{x}}=lg\frac{2x}{a+bx}-lg\frac{2}{ax+b}$=$lg\frac{x(ax+b)}{a+bx}=lgx$;
∴$\frac{x(ax+b)}{a+bx}=x$;
∵x>0;
∴$\frac{ax+b}{a+bx}=1$;
∴ax+b=a+bx恒成立;
∴a=b;
∴a+b=2a=2;
∴a=1,b=1.
點(diǎn)評(píng) 考查已知函數(shù)求值,已知f(x)求f[g(x)]的方法,1的對(duì)數(shù)為0,以及對(duì)數(shù)的運(yùn)算,對(duì)數(shù)函數(shù)的單調(diào)性,對(duì)于單調(diào)函數(shù)f(x),可由f(x1)=f(x2)得到x1=x2,以及多項(xiàng)式相等時(shí),對(duì)應(yīng)項(xiàng)系數(shù)相等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2${A}_{4}^{4}$ | B. | ${A}_{4}^{4}$•${A}_{3}^{3}$ | C. | ${A}_{4}^{4}$•${A}_{4}^{4}$ | D. | ${A}_{8}^{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com