【題目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(Ⅰ)求證:f(x)≥5;
(Ⅱ)若對任意實數(shù)x,15﹣2f(x)<a2+
都成立,求實數(shù)a的取值范圍.
【答案】證明:(Ⅰ)∵
, ∴f(x)的最小值為5,∴f(x)≥5.
(Ⅱ)解:由(Ⅰ)知:15﹣2f(x)的最大值等于5.
∵
,
“=”成立
,即
,
∴當(dāng)
時,
取得最小值5.
當(dāng)
時,
,
又∵對任意實數(shù)x,
都成立,
∴
.∴a的取值范圍為 ![]()
【解析】(Ⅰ)通過討論x的范圍,得到關(guān)于f(x)的分段函數(shù),從而求出f(x)的最小值即可;(Ⅱ)根據(jù)基本不等式的性質(zhì)求出a的范圍即可.
【考點精析】本題主要考查了絕對值不等式的解法的相關(guān)知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲兩枚骰子,求:
(1)點數(shù)之和為4的倍數(shù)的概率;
(2)點數(shù)之和大于5而小于10的概率;
(3)同時拋兩枚骰子,求至少有一個5點或者6點的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱
的棱長均為
.點
是側(cè)棱
的中點,點
、
分別是側(cè)面
,底面
的動點,且
平面
,
平面
.則點
的軌跡的長度為___________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)求函數(shù)
的定義域;
(2)判斷
的單調(diào)性,及單調(diào)區(qū)間;
(3)試求函數(shù)的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設(shè)備,該設(shè)備的第1年的維護費支出為20萬元,從第2年到第6年,每年的維修費增加4萬元,從第7年開始,每年維修費為上一年的125%.
(1)求第n年該設(shè)備的維修費
的表達式;
(2)設(shè)
,若
萬元,則該設(shè)備繼續(xù)使用,否則須在第n年對設(shè)備更新,求在第幾年必須對該設(shè)備進行更新?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在北京召開的第24屆國際數(shù)學(xué)家大會的會標,會標是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客.我們教材中利用該圖作為一個說法的一個幾何解釋,這個說法正確的是( )
![]()
A.如果
,那么
B.如果
,那么![]()
C.對任意正實數(shù)
和
,有
, 當(dāng)且僅當(dāng)
時等號成立D.對任意正實數(shù)
和
,有
,當(dāng)且僅當(dāng)
時等號成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題只理科做,滿分14分)如圖,已知
平面
,
,△
是正三角形,
,且
是
的中點.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求平面
與平面
所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com