分析 (Ⅰ)由圓的極坐標(biāo)方程,能求出圓C的直角坐標(biāo)方程,把$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}}\right.$代入x2+y2-2x=0,得t2-4tcosα+3=0,由此利用根的判別式能求出α的取值范圍.
(Ⅱ)設(shè)方程t2-4tcosα+3=0的兩個(gè)實(shí)數(shù)根分別為t1,t2,則由參數(shù)t的幾何意義可知:$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=\frac{{|{{t_1}+{t_2}}|}}{{{t_1}{t_2}}}=\frac{{|{4cosα}|}}{3}$,由此能求出$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的取值范圍.
解答 解:(Ⅰ)∵圓的極坐標(biāo)方程為ρ=2cosθ,
∴圓C的直角坐標(biāo)方程x2+y2-2x=0,
把$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}}\right.$代入x2+y2-2x=0,得t2-4tcosα+3=0,
又直線(xiàn)l與圓C交于A,B兩點(diǎn),∴△=16cos2α-12>0,
解得:$cosα>\frac{{\sqrt{3}}}{2}$或$cosα<-\frac{{\sqrt{3}}}{2}$(4分)
又由α∈[0,π),故α的取值范圍$α∈[{0,\frac{π}{6}})∪({\frac{5π}{6},π})$.
(Ⅱ)設(shè)方程t2-4tcosα+3=0的兩個(gè)實(shí)數(shù)根分別為t1,t2,
則由參數(shù)t的幾何意義可知:$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=\frac{{|{{t_1}+{t_2}}|}}{{{t_1}{t_2}}}=\frac{{|{4cosα}|}}{3}$,
又由$\frac{{\sqrt{3}}}{2}<|cosα|≤1$,∴$\frac{{2\sqrt{3}}}{3}<\frac{{|{4cosα}|}}{3}≤\frac{4}{3}$,
∴$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的取值范圍為$({\frac{{2\sqrt{3}}}{3},\frac{4}{3}}]$.
點(diǎn)評(píng) 本題考查圓的直角坐標(biāo)方程及角的取值范圍的求法,考查兩線(xiàn)段倒數(shù)和的取值范圍的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 函數(shù)$f(x)=sin\sqrt{x}$不是周期函數(shù). | |
| B. | 函數(shù)$f(x)=sin\frac{1}{x}$不是周期函數(shù). | |
| C. | 函數(shù)f(x)=sin|x|不是周期函數(shù). | |
| D. | 函數(shù)f(x)=|sinx|+|cosx|的最小正周期為π. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 略有盈利 | B. | 無(wú)法判斷盈虧情況 | ||
| C. | 沒(méi)有盈也沒(méi)有虧損 | D. | 略有虧損 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com