【題目】已知圓
過
兩點(diǎn),且圓心
在直線
上
(1)求圓
的方程
(2)若直線
過點(diǎn)
且被圓
截得的線段長為
,求
的方程
![]()
【答案】(1)
;(2)
或
.
【解析】
(1)把點(diǎn)
、
的坐標(biāo)代入圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)代入直線
,利用待定系數(shù)法求得系數(shù)的值;
(2)分類討論,斜率存在和斜率不存在兩種情況.
①當(dāng)直線
的斜率不存在時(shí),滿足題意,易得直線方程;
②當(dāng)直線
的斜率存在時(shí),設(shè)所求直線
的斜率為
,則直線
的方程為:
,由點(diǎn)到直線的距離公式求得
的值.
(1)設(shè)圓
的圓心坐標(biāo)為
,半徑為![]()
設(shè)圓
的方程為![]()
由題意可得
所以圓
方程為
.
(2)因?yàn)橹本
經(jīng)過點(diǎn)
,且被圓
截得的線段長為
圓心
到直線的距離為
當(dāng)直線
的斜率不存在時(shí),
的方程為
(8分)
此時(shí)圓心到直線的距離恰好為2,符合條件
當(dāng)直線
的斜率存在時(shí),設(shè)直線
的方程為![]()
則圓心
到直線
的距離為
即
此時(shí)直線
的方程為
(11分)
綜上所述直線
的方程為
或![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB經(jīng)過⊙O上一點(diǎn)C,⊙O的半徑為3,△AOB是等腰三角形,且C是AB中點(diǎn),⊙O交直線OB于E、D. ![]()
(1)證明:直線AB與⊙O相切;
(2)若∠CED的正切值為
,求OA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AB=1,BC=2,∠CBA=
,ABEF為直角梯形,BE∥AF,∠BAF=
,BE=2,AF=3,平面ABCD⊥平面ABEF. ![]()
(1)求證:AC⊥平面ABEF;
(2)求平面ABCD與平面DEF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代名詞“芻童”原來是草堆的意思,關(guān)于“芻童”體積計(jì)算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,并,以高乘之,皆六而一.”其計(jì)算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘,將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個(gè)數(shù)值相加,與高相乘,再取其六分之一.已知一個(gè)“芻童”的下底面是周長為18的矩形,上底面矩形的長為3,寬為2,“芻童”的高為3,則該“芻童”的體積的最大值為
A.
B.
C. 39 D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:
為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.求曲線C的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)四年級(jí)男同學(xué)有45名,女同學(xué)有30名,老師按照分層抽樣的方法組建了一個(gè)5人的課外興趣小組.
(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(Ⅰ)求證:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在點(diǎn)E使得AD1與平面D1EC成的角為
?若存在,求出AE的長,若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
.
若
,解不等式
;
若不等式
對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
若
,解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國家
和3個(gè)歐洲國家
中選擇2個(gè)國家去旅游.
(Ⅰ)若從這6個(gè)國家中任選2個(gè),求這2個(gè)國家都是亞洲國家的概率;
(Ⅱ)若從亞洲國家和歐洲國家中各任選1個(gè),求這2個(gè)國家包括
但不包括
的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com