直線l:y=x+a(a≠0)和曲線C:y=x3-x2+1相切,求切點(diǎn)
的坐標(biāo)及a的值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中
.
(Ⅰ)求
的極值;
(Ⅱ)若存在區(qū)間
,使
和
在區(qū)間
上具有相同的單調(diào)性,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,ABCD是邊長(zhǎng)為60 cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E,F在AB上,是被切去的一個(gè)等腰直角三角形,斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=x(cm).![]()
①某廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
②某廠商要求包裝盒的容積V(cm3)最大,試問x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求
的最小值;
(2)在區(qū)間(1,2)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,若不等式
>1恒成立,求實(shí)數(shù)a的取值范圍;
(3)求證:
(其中
)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
,存在實(shí)數(shù)
,使得
成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.對(duì)于任意實(shí)數(shù)x恒有![]()
(1)求實(shí)數(shù)
的最大值;
(2)當(dāng)
最大時(shí),函數(shù)
有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)=-
x3+
x2+2ax.
(1)若f(x)在(
,+∞)上存在單調(diào)遞增區(qū)間,求a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為-
,求f(x)在該區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,
圖象與
軸異于原點(diǎn)的交點(diǎn)M處的切線為
,
與
軸的交點(diǎn)N處的切線為
, 并且
與
平行.
(1)求
的值;
(2)已知實(shí)數(shù)t∈R,求
的取值范圍及函數(shù)
的最小值;
(3)令
,給定
,對(duì)于兩個(gè)大于1的正數(shù)
,存在實(shí)數(shù)
滿足:
,
,并且使得不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com