【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為
類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為
類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到
類工人生產(chǎn)能力的莖葉圖(左圖),
類工人生產(chǎn)能力的頻率分布直方圖(右圖).
![]()
(1)問(wèn)
類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求
類工人生產(chǎn)能力的中位數(shù),并估計(jì)
類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若規(guī)定生產(chǎn)能力在
內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的
列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表
短期培訓(xùn) | 長(zhǎng)期培訓(xùn) | 合計(jì) | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計(jì) |
參考數(shù)據(jù):
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
,其中
.
【答案】(1)0.024;(2)可以在犯錯(cuò)誤概率不超過(guò)
的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān)
【解析】試題分析:(1)由莖葉圖知A類工人中抽查人數(shù)為25名,B類工人中應(yīng)抽查100﹣25=75,由頻率分布直方圖求出x;
(2)由莖葉圖知A類工人生產(chǎn)能力的中位數(shù)為122,由(1)及頻率分布直方圖,估計(jì)B類工人生產(chǎn)能力的平均數(shù);
(3)求出K2,與臨界值比較,即可得出結(jié)論.
試題解析:
解:(1)由莖葉圖知A類工人中抽查人數(shù)為25名,
∴B類工人中應(yīng)抽查100-25=75(名).
由頻率分布直方圖得 (0.008+0.02+0.048+x)10=1,得x=0.024.
(2)由莖葉圖知A類工人生產(chǎn)能力的中位數(shù)為122
由(1)及頻率分布直方圖,估計(jì)B類工人生產(chǎn)能力的平均數(shù)為
1150.00810+1250.02010+1350.04810+1450.02410=133.8
(3)由(1)及所給數(shù)據(jù)得能力與培訓(xùn)的22列聯(lián)表,
短期培訓(xùn) | 長(zhǎng)期培訓(xùn) | 合計(jì) | |
能力優(yōu)秀 | 8 | 54 | 62 |
能力不優(yōu)秀 | 17 | 21 | 38 |
合計(jì) | 25 | 75 | 100 |
由上表得
>10.828
因此,可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
過(guò)點(diǎn)
,其參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)求已知曲線
和曲線
交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點(diǎn).
![]()
(1)證明:
;
(2)設(shè)
為線段
上的動(dòng)點(diǎn),若線段
長(zhǎng)的最小值為
,求二面角
的余弦值.
【答案】(1)見(jiàn)解析;(2)![]()
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得
,然后根據(jù)等邊三角形的性質(zhì)可得
,又
,因此
得
平面
,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線段
長(zhǎng)的最小時(shí),
,在
中,
,
,
,∴
,由
中,
,
,∴
.然后建立空間直角坐標(biāo)系,寫(xiě)出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形
為菱形,
,
∴
為正三角形.又
為
的中點(diǎn),∴
.
又
,因此
.
∵
平面
,
平面
,∴
.
而
平面
,
平面
且
,
∴
平面
.又
平面
,∴
.
![]()
(2)如圖,
為
上任意一點(diǎn),連接
,
.
![]()
當(dāng)線段
長(zhǎng)的最小時(shí),
,由(1)知
,
∴
平面
,
平面
,故
.
在
中,
,
,
,
∴
,
由
中,
,
,∴
.
由(1)知
,
,
兩兩垂直,以
為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又
,
分別是
,
的中點(diǎn),
可得
,
,
,
,
,
,
,
所以
,
.
設(shè)平面
的一法向量為
,
則
因此
,
取
,則
,
因?yàn)?/span>
,
,
,所以
平面
,
故
為平面
的一法向量.又
,
所以
.
易得二面角
為銳角,故所求二面角的余弦值為
.
![]()
【題型】解答題
【結(jié)束】
20
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓
:
的左頂點(diǎn)為
,上頂點(diǎn)為
,直線
與直線
垂直,垂足為
點(diǎn),且點(diǎn)
是線段
的中點(diǎn).
![]()
(I)求橢圓
的方程;
(II)如圖,若直線
:
與橢圓
交于
,
兩點(diǎn),點(diǎn)
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直角梯形
中,
,
、
分別是
、
上的點(diǎn),且
,
.沿
將四邊形
翻折至
,連接
、
、
,得到多面體
,且
.
(Ⅰ)求多面體
的體積;
(Ⅱ)求證:平面
⊥平面
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017吉林延邊州模擬)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(1)求動(dòng)點(diǎn)A的軌跡M的方程;
(2)P為軌跡M上的動(dòng)點(diǎn),△PBC的外接圓為☉O1,當(dāng)點(diǎn)P在軌跡M上運(yùn)動(dòng)時(shí),求點(diǎn)O1到x軸的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為
類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為
類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到
類工人生產(chǎn)能力的莖葉圖(左圖),
類工人生產(chǎn)能力的頻率分布直方圖(右圖).
![]()
(1)問(wèn)
類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求
類工人生產(chǎn)能力的中位數(shù),并估計(jì)
類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若規(guī)定生產(chǎn)能力在
內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的
列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表
短期培訓(xùn) | 長(zhǎng)期培訓(xùn) | 合計(jì) | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計(jì) |
參考數(shù)據(jù):
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于下列四個(gè)命題:
p1:x0∈(0,+∞),
;
p2:x0∈(0,1),lo
x0>lo
x0;
p3:x∈(0,+∞),
<lo
x;
p4:x∈
<lo
x.
其中的真命題是( )
A. p1,p3 B. p1,p4
C. p2,p3 D. p2,p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的方程是
,將
向上平移2個(gè)單位得到曲線
.
(1)求曲線
的極坐標(biāo)方程;
(2)直線
的參數(shù)方程為
(
為參數(shù)),判斷直線
與曲線
的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn是數(shù)列{an}的前n項(xiàng)和,且4Sn=an2+2an﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com