欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.設(shè){an}是公差為正數(shù)的等差數(shù)列,若a1+a3=10,a1a3=16,則a12等于(  )
A.25B.30C.35D.40

分析 由已知得a1<a3,且a1,a3是方程x2-10x+16=0的兩個(gè)根,解方程x2-10x+16=0,得a1=2,a3=8,由此求出公差,從而能求出a12

解答 解:∵{an}是公差為正數(shù)的等差數(shù)列,a1+a3=10,a1a3=16,
∴a1<a3,且a1,a3是方程x2-10x+16=0的兩個(gè)根,
解方程x2-10x+16=0,得a1=2,a3=8,
∴2+2d=8,解得d=3,
∴a12=a1+11d=2+11×3=35.
故選:C.

點(diǎn)評 本題考查等差數(shù)列的第12項(xiàng)和求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓O:x2+y2=r2(r>0)與y軸的正半軸交于點(diǎn)M,直線l1:y=2x+1被圓O所截得的弦長為$\frac{4\sqrt{5}}{5}$,圓O上相異兩動(dòng)點(diǎn)A,B所在的直線l2的方程為y=kx+m,且滿足直線MA與直線MB的斜率之積為$\frac{\sqrt{3}}{3}$.
(Ⅰ)求實(shí)數(shù)r的值;
(Ⅱ)試探究直線AB是否經(jīng)過定點(diǎn),若經(jīng)過,請求定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若數(shù)列{bn}:對于任意的n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.
(1)設(shè)數(shù)列{an}滿足:a1=a,對于任意的n∈N*,都有an+an+1=2n,證明:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式.
(2)設(shè)(1)中的數(shù)列{an}的前n項(xiàng)和為Sn,試問:是否存在實(shí)數(shù)a,使得數(shù)列{Sn}有連續(xù)的兩項(xiàng)都等于50?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)三次方程式x3-17x2+32x-30=0有兩個(gè)復(fù)數(shù)根a+i,1+bi,其中a,b是不為0的實(shí)數(shù),試求另一實(shí)根是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在下班高峰期,記者在某紅綠燈路口隨機(jī)訪問10個(gè)步行下班的路人,其年齡的莖葉圖如圖:
(1)求這些路人年齡的中位數(shù)與方差;
(2)若從40歲以上的路人中,隨機(jī)抽取2人,求其中一定含有50歲以上的路人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知α、β是兩個(gè)平面,m、n是兩條直線,則下列命題不正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m⊥α,m⊥β,則α∥β
C.若m⊥α,m?β,則α⊥βD.若m⊥α,α∩β=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知m,n,l是直線,α,β是平面,下列命題中:
①若m?α,l?β,且α∥β,則m∥l;
②若l平行于α,則α內(nèi)可有無數(shù)條直線與l平行;
③若m?α,l?β,且l⊥m,則α⊥β;
④若m⊥n,n⊥l,則m∥l;
所有正確的命題序號為②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),有$\frac{f(a)+f(b)}{a+b}$>0成立.
(Ⅰ)判斷f(x)在[-1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:f(2x-1)<f(1-3x);
(Ⅲ)若f(x)≤m2-2am+1對所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,a1=8,Sn=nan+n(n-1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Wn=|a1|+|a2|+…+|an|,求Wn;
(3)設(shè)bn=$\frac{1}{{n(12-{a_n})}}$,Tn=b1+b2+…+bn,(n∈N*),是否存在最大的整數(shù)m,使得對任意n∈N*均有Tn>$\frac{m}{32}$成立?若存在求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案