【題目】已知A、B分別是橢圓
的左、右頂點(diǎn),P為橢圓C的下頂點(diǎn),F為其右焦點(diǎn)
點(diǎn)M是橢圓C上異于A、B的任一動(dòng)點(diǎn),過點(diǎn)A作直線
軸
以線段AF為直徑的圓交直線AM于點(diǎn)A、N,連接FN交直線l于點(diǎn)
點(diǎn)G的坐標(biāo)為
,且
,橢圓C的離心率為
.
求橢圓C的方程;
試問在x軸上是否存在一個(gè)定點(diǎn)T,使得直線MH必過該定點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo),若不存在,說明理由.
【答案】(1)
;(2)見解析
【解析】
根據(jù)題意可得
,解得即可;
假設(shè)在x軸上存在一個(gè)定點(diǎn)
,設(shè)動(dòng)點(diǎn)
,根據(jù)直線與直線的垂直的斜率的關(guān)系以及直線的斜率公式即可求出.
由題意得
,
,
,
所求橢圓的方程為
.
假設(shè)在x軸上存在一個(gè)定點(diǎn)
,使得直線MH必過定點(diǎn)
,
設(shè)動(dòng)點(diǎn)
,由于M點(diǎn)異于A,B,故
,
由點(diǎn)M在橢圓上,故有
,
![]()
又由
知
,
,
直線AM的斜率
,
又點(diǎn)N是以線段AF為直徑的圓與直線AM的交點(diǎn),![]()
.
直線FN的方程
,
,即
,
,H兩點(diǎn)連線的斜率
,![]()
將
式代入
式,并整理得
,
又P,T兩點(diǎn)連線的斜率
.
若直線MH必過定點(diǎn)
,則必有
恒成立,
即
,
整理得
,![]()
將
式代入
式,
得
,
解得
,故直線MH過定點(diǎn)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
, (
為參數(shù),
為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的直角坐標(biāo)方程為
.
(Ⅰ)將曲線
的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)
的直角坐標(biāo)為
,直線
與曲線
的交點(diǎn)為
、
,求
的取值范圍.
【答案】(I)
;(II)
.
【解析】試題分析:(Ⅰ)將由
代入
,化簡(jiǎn)即可得到曲線
的極坐標(biāo)方程;(Ⅱ)將
的參數(shù)方程
代入
,得
,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.
試題解析:(Ⅰ)由
及
,得
,即![]()
所以曲線
的極坐標(biāo)方程為![]()
(II)將
的參數(shù)方程
代入
,得![]()
∴
, 所以
,又
,
所以
,且
,
所以
,
由
,得
,所以
.
故
的取值范圍是
.
【題型】解答題
【結(jié)束】
23
【題目】已知
、
、
均為正實(shí)數(shù).
(Ⅰ)若
,求證: ![]()
(Ⅱ)若
,求證: ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)關(guān)于x的函數(shù)
.
(1)當(dāng)
時(shí),求
的值域;
(2)若不等式
對(duì)
恒成立,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)
有3個(gè)零點(diǎn),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】省環(huán)保廳對(duì)
、
、
三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測(cè),測(cè)得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:
|
|
| |
優(yōu)(個(gè)) | 28 |
|
|
良(個(gè)) | 32 | 30 |
|
已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄
城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在
城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);
(2)已知
,
,求在
城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動(dòng)圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市在經(jīng)濟(jì)高速發(fā)展的同時(shí),根據(jù)中央文明委辦公室2017年度頒布的《全國文明城市(地級(jí)以上)測(cè)評(píng)體系》標(biāo)準(zhǔn),特制了創(chuàng)建全國文明城市三年行動(dòng)計(jì)劃(2018-2020年).在城市環(huán)境衛(wèi)生的治理方面,經(jīng)過兩年的治理,市容市貌煥然一新,為了調(diào)查市民對(duì)城區(qū)環(huán)境衛(wèi)生的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如圖所示的頻率分布直方圖,其中
.
(1)求被調(diào)查市民滿意程度的平均數(shù)與中位數(shù)(精確到小數(shù)點(diǎn)后三位);
(2)若按照分層抽樣的方式從
中隨機(jī)抽取6人,再從這6人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)
的一條對(duì)稱軸是
;
②函數(shù)
的圖象關(guān)于點(diǎn)(
,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若
,則
,其中![]()
以上四個(gè)命題中正確的有 (填寫正確命題前面的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,側(cè)面
⊥底面
,底面
為直角梯形,
//
,
,
,
,
為
的中點(diǎn).
![]()
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為
,求
的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com