已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓
相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
![]()
(1)橢圓
的標(biāo)準(zhǔn)方程為
;(2)
,故直線
與圓
相切;(3)當(dāng)點(diǎn)
在圓
上運(yùn)動時,
,故直線
始終與圓
相切
(1)因為
,所以c=1
則b=1,即橢圓
的標(biāo)準(zhǔn)方程為![]()
(2)因為
(1,1),所以
,所以
,所以直線OQ的方程為y=-2x(6分)
又橢圓的左準(zhǔn)線方程為x=-2,所以點(diǎn)Q(-2,4))
所以
,又
,所以
,即
,
故直線
與圓
相切
(3)當(dāng)點(diǎn)
在圓
上運(yùn)動時,直線
與圓
保持相切
證明:設(shè)
(
),則
,所以
,
,
所以直線OQ的方程為
所以點(diǎn)Q(-2,
)
所以
,
又
,所以
,即
,故直線
始終與圓
相切
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省八市高三下學(xué)期3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知圓O:x2+y2=4,直線
:
.若圓O上恰有3個點(diǎn)到直線
的距離都等于1,則正數(shù)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com