分析 (1)運用正弦定理和同角的商數(shù)關(guān)系,由特殊角的三角函數(shù)值可得A;
(2)運用三角形的面積公式和余弦定理,解方程即可得到所求b,c的值.
解答 解:(1)在△ABC中,$\sqrt{3}$bcosA=asinB.
由正弦定理得$\sqrt{3}sinBcosA=sinAsinB$,
∴$tanA=\sqrt{3}$,又0<A<π,
∴$A=\frac{π}{3}$.
(2)由S△ABC=9$\sqrt{3}$,得$\frac{1}{2}$bcsin$\frac{π}{3}$=9$\sqrt{3}$,即為bc=36,
由余弦定理可得a2=b2+c2-2bccosA=(b+c)2-2bc-2bccos$\frac{π}{3}$,
即36=(b+c)2-3bc=(b+c)2-108,
解得b+c=12,
由$\left\{\begin{array}{l}bc=36\\ b+c=12\end{array}\right.$得$\left\{\begin{array}{l}b=6\\ c=6\end{array}\right.$,
∴三角形邊b,c的長都為6.
點評 本題考查三角形的正弦定理和余弦定理、面積公式的運用,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8 | B. | 9 | C. | 4 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{a}<\frac{1}$ | B. | $\frac{a}>1$ | C. | $a+b>2\sqrt{ab}$ | D. | 2a>2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 直角三角形 | B. | 等腰三角形 | ||
| C. | 等腰或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a>-2 | B. | a>2 | C. | a<-2 | D. | a<-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com