【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=
AD,∠BAD=∠ABC=90°. (Ⅰ)證明:直線BC∥平面PAD;
(Ⅱ)若△PAD面積為2
,求四棱錐P﹣ABCD的體積.![]()
【答案】(Ⅰ)證明:四棱錐P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD平面PAD,BC平面PAD, ∴直線BC∥平面PAD;
(Ⅱ)解:四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=
AD,∠BAD=∠ABC=90°.設(shè)AD=2x,
則AB=BC=x,CD=
,O是AD的中點,
連接PO,OC,CD的中點為:E,連接OE,
則OE=
,PO=
,PE=
=
,
△PCD面積為2
,可得:
=2
,
即:
,解得x=2,PE=2
.
則V P﹣ABCD=
×
(BC+AD)×AB×PE=
=4
.![]()
【解析】(Ⅰ)利用直線與平面平行的判定定理證明即可. (Ⅱ)利用已知條件轉(zhuǎn)化求解幾何體的線段長,然后求解幾何體的體積即可.
【考點精析】利用直線與平面平行的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點,E、F、G分別是BC、CD和SC的中點.求證:
![]()
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,且滿足:,
,
(1)、求數(shù)列
的前
項和為
;
(2)、若不等式
恒成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣2x﹣8)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系
中,設(shè)中心在坐標原點,焦點在
軸上的橢圓
的左、右焦點分別為
,右準線
與
軸的交點為
,
.
![]()
(1)已知點
在橢圓
上,求實數(shù)
的值;
(2)已知定點
.
① 若橢圓
上存在點
,使得
,求橢圓
的離心率的取值范圍;
② 如圖,當(dāng)
時,記
為橢圓
上的動點,直線
分別與橢圓
交于另一點
,若
且
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一隧道內(nèi)設(shè)雙行線公路,其截面由一長方形和一拋物線構(gòu)成,如圖所示.為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上高度之差至少要有
米.若行車道總寬度
為
米.
![]()
(1)計算車輛通過隧道時的限制高度;
(2)現(xiàn)有一輛載重汽車寬
米,高
米,試判斷該車能否安全通過隧道?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD是邊長為1的正方形,SD
底面ABCD,SD=2,其中
分別是
的中點,
是
上的一個動點.
![]()
(1)當(dāng)點
落在什么位置時,
∥平面
,證明你的結(jié)論;
(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.(12分)
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com