【題目】在三棱柱
中,側(cè)面
為矩形,
,
,
是
的中點(diǎn),
與
交于點(diǎn)
,且
平面
.
![]()
(1)證明:平面
平面
;
(2)若
,
的重心為
,求直線(xiàn)
與平面
所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2)
.
【解析】試題分析:(1)通過(guò)證明
,
,推出
平面
,然后證明平面
平面
.(2)以
為坐標(biāo)原點(diǎn),分別以
,
,
所在直線(xiàn)為
,
,
軸建立如圖所示的空間直角坐標(biāo)系
.求出平面
的法向量,設(shè)直線(xiàn)
與平面
所成角
,利用空間向量的數(shù)量積求解直線(xiàn)
與平面
所成角的正弦值即可.
試題解析:(1)∵
為矩形,
,
,
是
的中點(diǎn),
∴
,
,
,
,
從而
,
,
∵
,
,∴
,
∴
,
∴
,從而
,
∵
平面
,
平面
,
∴
,
∵
,∴
平面
,
∵
平面
,
∴平面
平面
.
(2)如圖,以
為坐標(biāo)原點(diǎn),分別以
,
,
所在直線(xiàn)為
,
,
軸建立如圖所示的空間直角坐標(biāo)系
.
在矩形
中,由于
,所以
和
相似,
從而
,
又
,
,
∴
,
,
,
,
∴
,
,
,
,
,
∵
為
的重心,∴
,
,
設(shè)平面
的法向量為
,
,
,
由
可得
整理得![]()
令
,則
,
,∴
,
設(shè)直線(xiàn)
與平面
所成角
,則
,
所以直線(xiàn)
與平面
所成角的正弦值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知D,E,F分別為△ABC的邊BC,CA,AB的中點(diǎn),記
=a ,
=b.則下列命題中正確的個(gè)數(shù)是( )
①
=
a-b;②
=a+
b;③
=
a+
b;④
0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+3x+a
(1)當(dāng)a=﹣2時(shí),求不等式f(x)>2的解集
(2)若對(duì)任意的x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga
(a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求f(0)的值和實(shí)數(shù)m的值;
(2)當(dāng)m=1時(shí),判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個(gè)圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn). ![]()
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點(diǎn)E在線(xiàn)段AB上,過(guò)點(diǎn)E作交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°. ![]()
(1)求證:EF⊥PB;
(2)試問(wèn):當(dāng)點(diǎn)E在何處時(shí),四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時(shí)四棱錐P﹣EFCB的體積及直線(xiàn)PC與平面EFCB所成角的正切值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com