【題目】函數(shù)
的定義域?yàn)?/span>D,若存在閉區(qū)間
,使得函數(shù)
同時滿足:
(1)
在
內(nèi)是單調(diào)函數(shù);
(2)
在
上的值域?yàn)?/span>
,則稱區(qū)間
為
的“
倍值區(qū)間”.
下列函數(shù)中存在“3倍值區(qū)間”的有_____.
①
;②
;③
;④
.
【答案】①③
【解析】對于①,若函數(shù)
存在“3倍值區(qū)間”
,則有
,解得
.所以函數(shù)函數(shù)
存在“3倍值區(qū)間”
.
對于②,若函數(shù)
存在“3倍值區(qū)間”
,則有
,結(jié)合圖象可得方程
無解.所以函數(shù)函數(shù)
不存在“3倍值區(qū)間”.
對于③,當(dāng)
時,
.當(dāng)
時,
,從而可得函數(shù)
在區(qū)間
上單調(diào)遞增.若函數(shù)
存在“3倍值區(qū)間”
,且
,則有
,解得
.所以函數(shù)
存在“3倍值區(qū)間”
.
對于④,函數(shù)
為增函數(shù),若函數(shù)
存在“3倍值區(qū)間”
,則
,由圖象可得方程
無解,故函數(shù)
不存在“3倍值區(qū)間”.
綜上可得①③正確.
答案:①③
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系內(nèi),已知
是圓
上一點(diǎn),折疊該圓兩次使點(diǎn)
分別與圓上不相同的兩點(diǎn)(異于點(diǎn)
)重合,兩次的折痕方程分別為
和
,若圓
上存在點(diǎn)
,使
,其中
的坐標(biāo)分別為
,則實(shí)數(shù)
的取值集合為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進(jìn)”三個等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下: 表1:男生表2:女生
等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) | 等級 | 優(yōu)秀 | 合格 | 尚待改進(jìn) | |
頻數(shù) | 15 | x | 5 | 頻數(shù) | 15 | 3 | y |
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計數(shù)據(jù)填寫下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
參考數(shù)據(jù)與公式:
K2=
,其中n=a+b+c+d.
臨界值表:
P(K2>k0) | 0.05 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC內(nèi)角A,B,C所對的邊分別為a,b,c,且
.
(1)若
,求△ABC的面積;
(2)若
,
,且c>b,BC邊的中點(diǎn)為D,求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=ax2+bx+c(a、b∈R)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,﹣1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為
,(t為參數(shù)),直線l2的參數(shù)方程為
,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣
=0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知q和n均為給定的大于1的自然數(shù),設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
(1)當(dāng)q=2,n=3時,用列舉法表示集合A.
(2)設(shè)s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.證明:若an<bn,則s<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖像如圖所示.
![]()
(1)求函數(shù)的解析式;
(2)當(dāng)
時,求函數(shù)
的最大值和最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com