【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費
(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近13年的宣傳費
和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
![]()
由散點圖知,按
建立
關(guān)于
的回歸方程是合理的.令
,則
,經(jīng)計算得如下數(shù)據(jù):
|
|
|
|
|
|
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根據(jù)以上信息,建立
關(guān)于
的回歸方程;
(2)已知這種產(chǎn)品的年利潤
與
的關(guān)系為
.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費
時,年利潤的預(yù)報值是多少?
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一某班50名學(xué)生參加防疫知識競賽,將所有成績制作成頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
|
|
|
|
| 0.06 |
| 35 | 0.070 |
| 6 | 0.12 |
| 4 |
|
(1)求頻率分布表中
的值;
(2)從成績在
的學(xué)生中選出2人,請寫出所有不同的選法,并求選出2人的成績都在
中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,直線AD與直線BD相交于點D,直線BD的斜率減去直線AD的斜率的差是2,設(shè)D點的軌跡為曲線C.
求曲線C的方程;
已知直線l過點
,且與曲線C交于P,Q兩點
Q異于A,
,問在y軸上是否存在定點G,使得
?若存在,求出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(Ⅰ)若∠APB=60°,試求點P的坐標(biāo);
(Ⅱ)若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng)CD=
時,求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1) 討論
的單調(diào)性;
(2) 設(shè)
,當(dāng)
時,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率
,且橢圓
與圓
的4個交點恰為一個正方形的4個頂點.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知點
為橢圓
的下頂點,
為橢圓
上與
不重合的兩點,若直線
與直線
的斜率之和為
,試判斷是否存在定點
,使得直線
恒過點
,若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小李從網(wǎng)上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級甲、乙兩個小組各有10位同學(xué),在一次期中考試中,兩個小組同學(xué)的數(shù)學(xué)成績?nèi)缦拢?/span>
甲組:94,69,73,86,74,75,86,88,97,98;
乙組:75,92,82,80,95,81,83,91,79,82.
畫出這兩個小組同學(xué)數(shù)學(xué)成績的莖葉圖,判斷哪一個小組同學(xué)的數(shù)學(xué)成績差異較大,并說明理由;
從這兩個小組數(shù)學(xué)成績在90分以上的同學(xué)中,隨機選取2人在全班介紹學(xué)習(xí)經(jīng)驗,求選出的2位同學(xué)不在同一個小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,B1,B2是橢圓
的短軸端點,P是橢圓上異于點B1,B2的一動點.當(dāng)直線PB1的方程為
時,線段PB1的長為
.
![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點Q滿足:QB1⊥PB1,QB2⊥PB2,求證:△PB1B2與△QB1B2的面積之比為定值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com