【題目】在三棱柱
中,
平面
,
,
,
,點(diǎn)
在棱
上,且
.建立如圖所示的空間直角坐標(biāo)系.
(1)當(dāng)
時(shí),求異面直線
與
的夾角的余弦值;
(2)若二面角
的平面角為
,求
的值.
![]()
【答案】(1)
. (2)
.
【解析】試題分析:
(1)結(jié)合題中的空間直角坐標(biāo)系計(jì)算可得異面直線
與
的夾角的余弦值為
.
(2)二面角
的平面角為
,則平面的法向量
,據(jù)此列方程可解得
的值為
.
試題解析:
(1)易知
,
,
.
因?yàn)?/span>
,
,所以
,當(dāng)
時(shí),
.
所以
,
.
所以
,
.
故異面直線
與
的夾角的余弦值為
.
(2)由
可知,
,所以
,
由(1)知,
.
設(shè)平面
的法向量為
,
則
即
令
,解得
,
,
所以平面
的一個(gè)法向量為
.
設(shè)平面
的法向量為
,
則
即
令
,解得
,
,
所以平面
的一個(gè)法向量為
.
因?yàn)槎娼?/span>
的平面角為
,
所以
,
即
,解得
或
(舍),
故
的值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
的極值;
(2)當(dāng)
時(shí),若存在實(shí)數(shù)
,
使得不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=x+b與橢圓
+y2=1相交于A,B兩個(gè)不同的點(diǎn).
(1)求實(shí)數(shù)b的取值范圍;
(2)已知弦AB的中點(diǎn)P的橫坐標(biāo)是-
,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)為奇函數(shù),且在(﹣∞,0)內(nèi)是減函數(shù),f(2)=0,則
<0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為1的菱形,∠BAD=60°,側(cè)棱PA⊥底面ABCD,E、F分別是PA、PC的中點(diǎn). ![]()
(Ⅰ)證明:PA∥平面FBD;
(Ⅱ)若PA=1,在棱PC上是否存在一點(diǎn)M使得二面角E﹣BD﹣M的大小為60°.若存在,求出PM的長(zhǎng),不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am , an , 使得aman=16a12 , 則
+
的最小值為( )
A.![]()
B.![]()
C.![]()
D.不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)簡(jiǎn)單幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,俯視圖是等腰直角三角形,則該幾何體的體積為 , 表面積為 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=
+
的定義域?yàn)椋?/span> )
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=﹣f(x),且當(dāng)x∈[﹣1,0)時(shí)f(x)=(
)x , 則 f(log28)等于( )
A.3
B.![]()
C.﹣2
D.2
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com