【題目】已知數(shù)列
的前
項和為
,且
,![]()
(1)求證:數(shù)列
為等比數(shù)列,并求出數(shù)列
的通項公式;
(2)是否存在實數(shù)
,對任意
,不等式
恒成立?若存在,求出
的取值范圍,若不存在請說明理由.
【答案】(1)證明略;
(2)![]()
【解析】
(1)直接利用遞推關(guān)系式求出數(shù)列的通項公式,進(jìn)一步證明數(shù)列為等比數(shù)列;
(2)利用(1)的結(jié)論,進(jìn)一步利用分組法和恒成立問題求出實數(shù)λ的取值范圍.
證明:(1)已知數(shù)列{an}的前n項和為Sn,且
,①
當(dāng)n=1時,
,
則:當(dāng)n≥2時,
,②
①﹣②得:an=2an﹣2an﹣1﹣
+
,
整理得:
,
所以:
,
故:
(常數(shù)),
故:數(shù)列{an}是以
為首項,2為公比的等比數(shù)列.
故:
,
所以:
.
由于:
,
所以:
(常數(shù)).
故:數(shù)列{bn}為等比數(shù)列.
(2)由(1)得:
,
所以:
+(
),
=
,
=
,
假設(shè)存在實數(shù)λ,對任意m,n∈N*,不等式
恒成立,
即:
,
由于:
,
故當(dāng)m=1時,
,
所以:
,
當(dāng)n=1時,
.
故存在實數(shù)λ,且
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,海島O上有一座海拔300m的山,山頂上設(shè)有一個觀察站A.上午11時測得一輪船在島北偏東
的B處,俯角為
;11時20分又測得該船在島的北偏西
的C處,俯角為
.
![]()
(1)該船的速度為每小時多少千米?
(2)若此船以不變的航速繼續(xù)前進(jìn),則它何時到達(dá)島的正西方向?此時船離開島多少千米?(精確到lm)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的短軸長為2,且橢圓
過點
.
(1)求橢圓
的方程;
(2)設(shè)直線
過定點
,且斜率為
,若橢圓
上存在
,
兩點關(guān)于直線
對稱,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西北某省會城市計劃新修一座城市運動公園,設(shè)計平面如圖所示:其為五邊形
,其中三角形區(qū)域
為球類活動場所;四邊形
為文藝活動場所,
,為運動小道(不考慮寬度)
,
,
千米.
![]()
(1)求小道
的長度;
(2)求球類活動場所
的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A、B、C、D為空間四個不共面的點,以
的概率在每對點之間連一條邊,任意兩對點之間是否連邊是相互獨立的,則點A與B可用(一條邊或者若干條邊組成的)空間折線連接的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
為偶函數(shù).
(1)求實數(shù)
的值;
(2)若不等式
恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)
,
,是否存在實數(shù)m,使得
的最小值為2,若存在,請求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)判斷函數(shù)
的奇偶性,并說明理由;
(2)若
在
上的最小值為3,求實數(shù)
的值以及相應(yīng)的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100名顧客的相關(guān)數(shù)據(jù),如下表所示:
已知這100位顧客中一次性購物超過8件的顧客占55%.
一次性購物 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) |
| 30 | 25 |
| 10 |
結(jié)算時間(分/人) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)求
,
的值;
(2)求一位顧客一次購物的結(jié)算時間超過2分鐘的概率(頻率代替概率).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com