分析:根據(jù)分母不為零求出函數(shù)的定義域,設(shè)u=x2+2x+4,并判斷出函數(shù)u的單調(diào)區(qū)間,再由反比例函數(shù),以及復(fù)合函數(shù)的單調(diào)性求出原函數(shù)的增區(qū)間.
解答:解:由x
2+2x+4=(x+1)
2+3≠0得,函數(shù)的定義域是R,
設(shè)u=x
2+2x+4,則u在(-∞,-1]上是減函數(shù),在(-1,+∞)上是增函數(shù),
∵
y=在定義域上減函數(shù),∴函數(shù)
y=的單調(diào)增區(qū)間是(-∞,-1].
故答案為:(-∞,-1]
點評:本題考查了復(fù)合函數(shù)的單調(diào)性,先求出函數(shù)的定義域,再由內(nèi)到外根據(jù)初等函數(shù)函數(shù)的單調(diào)性,分別進行判斷單調(diào)區(qū)間,再由“同增異減”確定原函數(shù)的單調(diào)區(qū)間.