【題目】已知
中,角
所對的邊分別為
,滿足
.
![]()
(1)求
的大;
(2)如圖,
,在直線
的右側(cè)取點(diǎn)
,使得
.當(dāng)角
為何值時(shí),四邊形
面積最大.
【答案】(1)
(2)![]()
【解析】
(1)(法一)根據(jù)正弦定理利用“邊化角”的方法將原式化為
,利用兩角和的正弦公式進(jìn)行化簡,結(jié)合三角形的性質(zhì)即可求得
的大;(法二)根據(jù)余弦定理利用“角化邊”的方法將原式化為
,化簡得出
的值,即可得出
的大小.
(2)根據(jù)題意,設(shè)
,根據(jù)余弦定理表達(dá)出
,再根據(jù)三角形的面積公式,分別表達(dá)出
與
,從而得到四邊形
面積的函數(shù),利用三角函數(shù)的性質(zhì)即可求出面積的最大值.
(1)(法一):在
中,由正弦定理得![]()
![]()
,故
.
(法二)在
中,由余弦定理得![]()
故
.
(2)由(1)知,
且
,
為等邊三角形,
設(shè)
,則在
中,由余弦定理得
,
![]()
四邊形
的面積![]()
當(dāng)
即
時(shí),![]()
所以當(dāng)
時(shí),四邊形
的面積取得最大值
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=
百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計(jì)),設(shè)∠BAD=
,
(
,
).
![]()
(1)當(dāng)cos
=
時(shí),求小路AC的長度;
(2)當(dāng)草坪ABCD的面積最大時(shí),求此時(shí)小路BD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
,直線
.
(1)若直線
與圓
相切,求
的值;
(2)若直線
與圓
交于不同的兩點(diǎn)
,當(dāng)∠AOB為銳角時(shí),求k的取值范圍;
(3)若
,
是直線
上的動(dòng)點(diǎn),過
作圓
的兩條切線
,切點(diǎn)為
,探究:直線
是否過定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級期末考試的學(xué)生中抽出 6
名學(xué)生,其成績(均為整數(shù))的頻率分布直方圖如圖所示.
![]()
(1)估計(jì)這次考試的中位數(shù)
(2)假設(shè)分?jǐn)?shù)在
的學(xué)生的成績都不相同,且都在
分以上,現(xiàn)用簡單隨機(jī)抽樣方法,從
這
個(gè)數(shù)中任取
個(gè)數(shù),求這
個(gè)數(shù)恰好是兩個(gè)學(xué)生的成績的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在長方體ABCD-A1B1C1D1中,AB=2,BC=2,CC1=3,長方體每條棱所在直線與過點(diǎn)C1的平面α所成的角都相等,則直線AC與平面α所成角的余弦值為( )
A.
或1 B.
或0 C.
或0 D.
或1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)幾何體的平面展開圖,其中四邊形ABCD為正方形,△PDC, △PBC, △PAB, △PDA為全等的等邊三角形,E、F分別為PA、PD的中點(diǎn),在此幾何體中,下列結(jié)論中錯(cuò)誤的為 ( )
![]()
A. 平面BCD⊥平面PAD B. 直線BE與直線AF是異面直線
C. 直線BE與直線CF共面 D. 面PAD與面PBC的交線與BC平行
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com