已知函數(shù)![]()
(1)求函數(shù)
的最大值;
(2)若
的取值范圍.
(1)0;(2)![]()
解析試題分析:(1)先求
,再利用
判斷函數(shù)
的單調(diào)性并求最值;
(2)由題設知
先求其導數(shù)得![]()
因為
,所以
,可分
,
,
三種情況探究
,進而得到函數(shù)
變化性質(zhì),并從中找出滿足
的
的取值范圍.
解:(1)
, 1分
當
時,
;當
時,
;當
時,
;
所以函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減; 3分
故
. 4分
(2)由
,得
. 6分
當
時,由(1)得
成立; 8分
當
時,因為
時
,所以
時,
成立; 10分
當
時,因為
時
,所以
.13分
綜上,知
的取值范圍是
. 14分
考點:1、導數(shù)在研究函數(shù)性質(zhì)中的應用;2、分類討論的思想.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,
為
的導函數(shù)。 (1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若對一切的實數(shù)
,有
成立,求
的取值范圍;
(3)當
時,在曲線
上是否存在兩點
,使得曲線在
兩點處的切線均與直線
交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
在
上的最大值為
(
).
(1)求數(shù)列
的通項公式;
(2)求證:對任何正整數(shù)n (n≥2),都有
成立;
(3)設數(shù)列
的前n項和為Sn,求證:對任意正整數(shù)n,都有
成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ex+2x2—3x
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2) 當x ≥1時,若關于x的不等式f(x)≥ax恒成立,求實數(shù)a的取值范圍;
(3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,
≈1.6,e0.3≈1.3)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
上是減函數(shù),求實數(shù)a的最小值;
(3)若
,使
成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x3+ax2+bx.
(1)若函數(shù)y=f(x)在x=2處有極值-6,求y=f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x)的導數(shù)f′(x)對x∈[-1,1]都有f′(x)≤2,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com