| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 設(shè)x<0,則-x>0,由函數(shù)得性質(zhì)可得解析式,可判①的真假,再由性質(zhì)作出圖象可對(duì)其他命題作出判斷.
解答
解:由題意得,x>0時(shí),g(x)=f(x)=e-x(x-1),
當(dāng)x<0時(shí),則-x>0,g(-x)=f(-x)=ex(-x-1)=-g(x),所以g(x)=ex(x+1),故①不正確;
對(duì)x<0時(shí)的解析式求導(dǎo)數(shù)可得,g′(x)=ex(x+2),令其等于0,解得x=-2,
且當(dāng)x∈(-∞,-2)上導(dǎo)數(shù)小于0,函數(shù)單調(diào)遞減;當(dāng)x∈(-2,+∞)上導(dǎo)數(shù)大于0,函數(shù)單調(diào)遞增,
x=-2處為極小值點(diǎn),且g(-2)>-1,且在x=1處函數(shù)值為0,且當(dāng)x<-1是函數(shù)值為負(fù).
又因?yàn)槠婧瘮?shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱(chēng),故函數(shù)f(x)的圖象應(yīng)如圖所示:
由圖象可知:函數(shù)f(x)有3個(gè)零點(diǎn),故②③正確;
由于函數(shù)-1<g(x)<1,故有對(duì)?x1,x2∈R,|g(x2)-g(x1)|<2恒成立,即④不正確.
故選:B.
點(diǎn)評(píng) 本題是個(gè)新定義題,主要考查利用函數(shù)奇偶性求函數(shù)解析式的方法,在解題時(shí)注意對(duì)于新定義的理解.作出函數(shù)的圖象是解決問(wèn)題的關(guān)鍵,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①③ | B. | ②④ | C. | ③④ | D. | ②⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | $1+\frac{1}{2}$ | ||
| C. | $1+\frac{1}{2}+\frac{1}{3}$ | D. | $1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^{n_0}}-1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=ln(x+1) | B. | y=$\frac{1}{2}$x2+cosx | C. | y=x4-3x2 | D. | y=3x+sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 337 | B. | 338 | C. | 1678 | D. | 2012 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com