【題目】已知橢圓C:
(
)的兩焦點(diǎn)與短軸兩端點(diǎn)圍成面積為12的正方形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)我們稱(chēng)圓心在橢圓上運(yùn)動(dòng),半徑為
的圓是橢圓的“衛(wèi)星圓”.過(guò)原點(diǎn)O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓C于A、B兩點(diǎn),若直線
、
的斜率為
、
,當(dāng)
時(shí),求此時(shí)“衛(wèi)星圓”的個(gè)數(shù).
【答案】(1)
;(2)8個(gè).
【解析】
(1)由條件可得
,解出來(lái)即可;
(2) 設(shè)“衛(wèi)星圓”的圓心為
,由定義可得“衛(wèi)星圓”的標(biāo)準(zhǔn)方程為
,求其圓心到直線
,直線
的距離,整理可轉(zhuǎn)化為
、
是方程
的兩個(gè)不相等的實(shí)數(shù)根,則
,再加上
,
,解方程即可.
(1)∵橢圓C的兩焦點(diǎn)與短軸兩端點(diǎn)圍成面積為12的正方形,
∴由橢圓的定義和正方形的性質(zhì),可得
,
解得
.
又![]()
∴橢圓C的標(biāo)準(zhǔn)方程為
.
(2)設(shè)“衛(wèi)星圓”的圓心為
.
由“衛(wèi)星圓”的定義,可得“衛(wèi)星圓”的半徑為
.
∴“衛(wèi)星圓”的標(biāo)準(zhǔn)方程為
.
∵直線
:
與“衛(wèi)星圓”相切,
則由點(diǎn)到直線的距離公式可
,
化簡(jiǎn)得
.
同理可得
.
∴
、
是方程
的兩個(gè)不相等的實(shí)數(shù)根,
∴
,由
,得
,
將
代入得
,
.
又∵“衛(wèi)星圓”的圓心
在橢圓C上,
∴代入橢圓方程
中,可得
.
解得
,
.
當(dāng)
時(shí),
;
當(dāng)
時(shí),
,
∴滿(mǎn)足條件的點(diǎn)
共8個(gè),
∴這樣“衛(wèi)星圓”存在8個(gè).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:其中正確命題數(shù)是( )
A.在線性回歸模型中,相關(guān)系數(shù)
表示解釋變量
對(duì)于預(yù)報(bào)變量
變化的貢獻(xiàn)率,
越接近于1,表示回歸效果越好
B.兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1
C.在回歸直線方程
中,當(dāng)解釋變量
每增加一個(gè)單位時(shí),預(yù)報(bào)變量
平均減少0.5個(gè)單位
D.對(duì)分類(lèi)變量
與
,它們的隨機(jī)變量
的觀測(cè)值來(lái)說(shuō),觀測(cè)值越小,“
與
有關(guān)系”的把握程度越大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)以往統(tǒng)計(jì)資料,某地車(chē)主購(gòu)買(mǎi)甲種保險(xiǎn)的概率為0.5,購(gòu)買(mǎi)乙種保險(xiǎn)但不購(gòu)買(mǎi)甲種保險(xiǎn)的概率為0.3.設(shè)各車(chē)主購(gòu)買(mǎi)保險(xiǎn)相互獨(dú)立.
(1)求該地1位車(chē)主至少購(gòu)買(mǎi)甲、乙兩種保險(xiǎn)中的1種的概率;
(2)X表示該地的100位車(chē)主中,甲、乙兩種保險(xiǎn)都不購(gòu)買(mǎi)的車(chē)主數(shù),求X的均值和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
的焦點(diǎn)
與橢圓
的右焦點(diǎn)重合,拋物線
的動(dòng)弦
過(guò)點(diǎn)
,過(guò)點(diǎn)
且垂直于弦
的直線交拋物線的準(zhǔn)線于點(diǎn)
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱(chēng)為三角形的“歐拉線”.在平面直角坐標(biāo)系中作
,
中,
,點(diǎn)
,點(diǎn)
,且其“歐拉線”與圓
相切,則該圓的直徑為( )
A.1B.
C.2D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)更新技術(shù)培育了一批新型的“盆栽果樹(shù)”,這種“盆栽果樹(shù)”將一改陸地栽植果樹(shù)只在秋季結(jié)果的特性,能夠一年四季都有花、四季都結(jié)果.現(xiàn)為了了解果樹(shù)的結(jié)果情況,從該批果樹(shù)中隨機(jī)抽取了容量為120的樣本,測(cè)量這些果樹(shù)的高度(單位:厘米),經(jīng)統(tǒng)計(jì)將所有數(shù)據(jù)分組后得到如圖所示的頻率分布直方圖.
![]()
(1)求
;
(2)求抽取的盆栽果樹(shù)的平均高度;
(3)已知所抽取的樣本來(lái)自
兩個(gè)實(shí)驗(yàn)基地,規(guī)定高度不低于40厘米的果樹(shù)為“優(yōu)品盆栽”,請(qǐng)將圖中
列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為“優(yōu)品盆栽”與
兩個(gè)實(shí)驗(yàn)基地有關(guān)?
優(yōu)品 | 非優(yōu)品 | 合計(jì) | |
| 60 | ||
| 20 | ||
合計(jì) |
附:
|
|
| |
|
|
|
|
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有2名男生、3名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)全體站成一排,甲不站排頭也不站排尾;
(2)全體站成一排,女生必須站在一起;
(3)全體站成一排,男生互不相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,![]()
(1)當(dāng)
,求函數(shù)
的值域;
(2)設(shè)函數(shù)
,問(wèn):當(dāng)
取何值時(shí),函數(shù)
在
上為單調(diào)函數(shù);
(3)設(shè)函數(shù)
的零點(diǎn)為
,試討論當(dāng)
時(shí),
是否存在,若存在請(qǐng)求出
的取值范圍.(
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com