已知橢圓的兩個焦點分別為
,離心率
。
(1)求橢圓方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為–
,求直線l傾斜角的取值范圍。
(Ⅰ)
;(Ⅱ)![]()
【解析】
試題分析:(Ⅰ)設(shè)橢圓方程為![]()
由已知,
,由
解得a=3,
∴
為所求
(Ⅱ)解法一:設(shè)直線l的方程為y=kx+b(k≠0)
解方程組![]()
將①代入②并化簡,得
將④代入③化簡后,得
。
解得
∴
, 所以傾斜角
。
解法二:(點差法)設(shè)![]()
的中點為
在橢圓
內(nèi),且直線l不與坐標軸平行。
因此,
,![]()
∵
,![]()
∴兩式相減得 ![]()
即 ![]()
∴
。所以傾斜角![]()
考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關(guān)系。
點評:典型題,涉及直線與橢圓的位置關(guān)系問題,通過聯(lián)立方程組得到一元二次方程,應(yīng)用韋達定理可實現(xiàn)整體代換,簡化解題過程。涉及橢圓上兩點問題,可以利用“點差法”,建立連線的斜率與a,b的關(guān)系。
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
| 2 |
2
| ||
| 3 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 5 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年山東省高考模擬預(yù)測卷(四)文科數(shù)學(xué)試卷(解析版) 題型:解答題
給定橢圓
:
,稱圓心在坐標原點
,半徑為
的圓是橢圓
的“伴隨圓”. 已知橢圓
的兩個焦點分別是
,橢圓
上一動點
滿足
.
(Ⅰ)求橢圓
及其“伴隨圓”的方程;
(Ⅱ)過點P![]()
作直線
,使得直線
與橢圓
只有一個交點,且
截橢圓
的“伴隨圓”所得的弦長為
.求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題
((本小題滿分14分)
給定橢圓
:
,稱圓心在坐標原點
,半徑為
的圓是橢圓
的“伴隨圓”.
已知橢圓
的兩個焦點分別是
,橢圓
上一動點
滿足
.
(Ⅰ)求橢圓
及其“伴隨圓”的方程
(Ⅱ)試探究y軸上是否存在點
(0,
)
,使得過點
作直線
與橢圓
只有一個交點,且
截橢圓
的“伴隨圓”所得的弦長為
.若存在,請求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分14分)
給定橢圓
:
,稱圓心在坐標原點
,半徑為
的圓是橢圓
的“伴隨圓”.
已知橢圓
的兩個焦點分別是
,橢圓
上一動點
滿足
.
(Ⅰ) 求橢圓
及其“伴隨圓”的方程;
(Ⅱ) 過點P![]()
作直線
,使得直線
與橢圓
只有一個交點,且
截橢圓
的“伴隨圓”所得的弦長為
.求出
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com