【題目】某工廠每日生產(chǎn)一種產(chǎn)品
噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為
萬元,產(chǎn)品價(jià)格隨著產(chǎn)量變化而有所變化,經(jīng)過一段時(shí)間的產(chǎn)銷,得到了
的一組統(tǒng)計(jì)數(shù)據(jù)如下表:
![]()
(1)請(qǐng)判斷
與
中,哪個(gè)模型更適合刻畫
之間的關(guān)系?可從函數(shù)增長(zhǎng)趨勢(shì)方面給出簡(jiǎn)單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出
關(guān)于
的回歸方程,并估計(jì)當(dāng)日產(chǎn)量
時(shí),日銷售額是多少?(結(jié)果保留整數(shù))
參考公式及數(shù)據(jù):線性回歸方程
中,
,
.
,
,![]()
【答案】(1)答案見解析;(2)23萬元.
【解析】分析:(1)從函數(shù)增長(zhǎng)趨勢(shì)考慮可知
更適合刻畫
之間的關(guān)系.
(2)由題意可得非線性回歸方程為
,據(jù)此預(yù)測(cè)當(dāng)日產(chǎn)量
時(shí),日銷售額是23萬元.
詳解:(1)
更適合刻畫
之間的關(guān)系.理由如下:
值每増加1,函數(shù)值的増加量分別為7, 4, 3, 2,増加得越來越緩慢,
適合對(duì)數(shù)型函數(shù)的増長(zhǎng)規(guī)律,與直線型函數(shù)的均勻増長(zhǎng)存在較大差異,
故
更適合刻畫
之間的關(guān)系.
(2)令
,計(jì)算知
,
所以
,
,所以所求的回歸方程為
.
當(dāng)
時(shí),銷售額為
(萬元).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
,函數(shù)
的圖象過點(diǎn)
,點(diǎn)
與其相鄰的最高點(diǎn)的距離為
.
(1)求
的單調(diào)遞增區(qū)間;
(2)計(jì)算
;
(3)設(shè)函數(shù)
,試討論函數(shù)
在區(qū)間
上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體
中,
,
,點(diǎn)
為
的中點(diǎn).
![]()
(1)求證:直線
∥平面
;
(2)求證:平面
平面
;
(3)求證:直線
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
及圓
:
.
(1)若直線
過點(diǎn)
且與圓心
的距離為1,求直線
的方程;
(2)若過點(diǎn)
的直線
與圓
交于
、
兩點(diǎn),且
,求以
為直徑的圓的方程;
(3)若直線
與圓
交于
,
兩點(diǎn),是否存在實(shí)數(shù)
,使得過點(diǎn)
的直線
垂直平分弦
?若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,
,
,
,
在底面
的射影為
的中點(diǎn),
是
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小圖給出了某池塘中的浮萍蔓延的面積
與時(shí)間
(月)的關(guān)系的散點(diǎn)圖.有以下敘述:
![]()
①與函數(shù)
相比,函數(shù)
作為近似刻畫
與
的函數(shù)關(guān)系的模型更好;
②按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),第
個(gè)月時(shí),浮萍的面積就會(huì)超過
;
③按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),浮萍每個(gè)月增加的面積約是上個(gè)月增加面積的兩倍;
④按圖中數(shù)據(jù)顯現(xiàn)出的趨勢(shì),浮萍從
月的
蔓延到
至少需要經(jīng)過
個(gè)月.
其中正確的說法有__________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2n+2-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an·log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心![]()
C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:
,并整理得到如下頻率分布直方圖:
![]()
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com