【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由
算得,![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是 ( 。
A. 在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C. 有99.9%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D. 有99.9%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復(fù)雜,它的制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,兩次燒制過程相互獨(dú)立。某陶瓷廠準(zhǔn)備仿制甲、乙、丙三件不同的唐三彩工藝品,根據(jù)該廠全面治污后的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為
,
,
,經(jīng)過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為
,
,
.
(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;
(2)經(jīng)過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數(shù)為
,求隨機(jī)變量
的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC—A1B1C1中,側(cè)面AA1B1B是正方形,AC丄側(cè)面AA1B1B,AC=AB,點(diǎn)E是B1C1的中點(diǎn).
(Ⅰ)求證:C1A∥平面EBA1;
(Ⅱ)若EF丄BC1,垂足為F,求二面角B—AF—A1的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
![]()
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
中,內(nèi)角
、
、
所對的邊分別是
、
、
,不等式
對一切實(shí)數(shù)
恒成立.
(1)求
的取值范圍;
(2)當(dāng)
取最大值,且
的周長為
時(shí),求
面積的最大值,并指出面積取最大值時(shí)
的形狀.(參考知識:已知
、
,
;
、
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長均為
的三棱柱
中,側(cè)面
底面
,
.
![]()
(1)求側(cè)棱
與平面
所成角的正弦值的大;
(2)已知點(diǎn)
滿足
,在直線
上是否存在點(diǎn)
,使
平面
?若存在,請確定點(diǎn)
的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形
中,
,且
.現(xiàn)以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點(diǎn),如圖 2.
(1)求證:
平面
;
(2)求證:
平面
;
(3)求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,
,
為橢圓的兩個(gè)焦點(diǎn),
為橢圓上任意一點(diǎn),且
,
構(gòu)成等差數(shù)列,過橢圓焦點(diǎn)垂直于長軸的弦長為3.
(1)求橢圓
的方程;
(2)若存在以原點(diǎn)為圓心的圓,使該圓的任意一條切線與橢圓
恒有兩個(gè)交點(diǎn)
,且
,求出該圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
滿足如下條件:
①函數(shù)
的最小值為
,最大值為9;
②
且
;
③若函數(shù)
在區(qū)間
上是單調(diào)函數(shù),則
的最大值為2.
試探究并解決如下問題:
(Ⅰ)求
,并求
的值;
(Ⅱ)求函數(shù)
的圖象的對稱軸方程;
(Ⅲ)設(shè)
是函數(shù)
的零點(diǎn),求
的值的集合.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com