【題目】如圖,已知
過(guò)點(diǎn)
,圓心C在拋物線
上運(yùn)動(dòng),若MN為
在x軸上截得的弦,設(shè)
,
,
當(dāng)C運(yùn)動(dòng)時(shí),
是否變化?證明你的結(jié)論.
求
的最大值,并求出取最大值時(shí)
值及此時(shí)
方程.
![]()
【答案】(1)不變(2)最大值為
,圓C方程為![]()
【解析】
(1)先設(shè)出圓的方程,與
聯(lián)立利用韋達(dá)定理表示出|MN|即可發(fā)現(xiàn)|MN|的取值是否變化;
(2)由(1)可設(shè)M(x﹣p,0)、M(x+p,0),先利用兩點(diǎn)間的距離公式求出 l1,l2,代入
整理為關(guān)于p的函數(shù),結(jié)合基本不等式求出其最大值和此時(shí)圓C的方程即可.
解:
設(shè)
,
方程為
與
聯(lián)立
得![]()
在拋物線上
,代入
得
為定值
不變
由
可設(shè)
、
,
,
當(dāng)且僅當(dāng)
時(shí)取等號(hào),即
圓方程為
當(dāng)
時(shí),
為∠ANx--∠AMx,又
同理,
時(shí),
仍可得![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,
為邊長(zhǎng)為2的等邊三角形,平面
平面
,四邊形
為菱形,
,
與
相交于點(diǎn)
.
![]()
(1)求證:
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為等差數(shù)列,且
,其前8項(xiàng)和為52,
是各項(xiàng)均為正數(shù)的等比數(shù)列,且滿足
,
.
(1)求數(shù)列
和
的通項(xiàng)公式;
(2)令
,數(shù)列
的前
項(xiàng)和為
,若對(duì)任意正整數(shù)
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張?jiān)谔詫毦W(wǎng)上開(kāi)一家商店,他以10元每條的價(jià)格購(gòu)進(jìn)某品牌積壓圍巾2000條.定價(jià)前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):
商店以30元每條的價(jià)格銷(xiāo)售,平均每日銷(xiāo)售量為10條;
商店以25元每條的價(jià)格銷(xiāo)售,平均每日銷(xiāo)售量為20條.假定這種圍巾的銷(xiāo)售量
(條)是售價(jià)
(元)
的一次函數(shù),且各個(gè)商店間的售價(jià)、銷(xiāo)售量等方面不會(huì)互相影響.
(1)試寫(xiě)出圍巾銷(xiāo)售每日的毛利潤(rùn)
(元)關(guān)于售價(jià)
(元)
的函數(shù)關(guān)系式(不必寫(xiě)出定義域),并幫助小張定價(jià),使得每日的毛利潤(rùn)最高(每日的毛利潤(rùn)為每日賣(mài)出商品的進(jìn)貨價(jià)與銷(xiāo)售價(jià)之間的差價(jià));
(2)考慮到這批圍巾的管理、倉(cāng)儲(chǔ)等費(fèi)用為200元/天(只要圍巾沒(méi)有售完,均須支付200元/天,管理、倉(cāng)儲(chǔ)等費(fèi)用與圍巾數(shù)量無(wú)關(guān)),試問(wèn)小張應(yīng)該如何定價(jià),使這批圍巾的總利潤(rùn)最高(總利潤(rùn)=總毛利潤(rùn)-總管理、倉(cāng)儲(chǔ)等費(fèi)用)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,求
的單調(diào)區(qū)間;
(2)若
在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
,
時(shí),求滿足
的
的值;
(2)若函數(shù)
是定義在
上的奇函數(shù).
①存在
,使得不等式
有解,求實(shí)數(shù)
的取值范圍;
②若函數(shù)
滿足
,若對(duì)任意
且
,不等式
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的
的值為4時(shí),輸出的
的值為2,則空白判斷框中的條件可能為( ).
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十一黃金小長(zhǎng)假期間,某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿。當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑。賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用(人工費(fèi),消耗費(fèi)用等等)。受市場(chǎng)調(diào)控,每個(gè)房間每天的房?jī)r(jià)不得高于340元。設(shè)每個(gè)房間的房?jī)r(jià)每天增加x元(x為10的正整數(shù)倍)。
(1) 設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2) 設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3) 一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,點(diǎn)
,
分別是橢圓
的左、右焦點(diǎn),過(guò)點(diǎn)
且與
軸垂直的直線與橢圓交于
,
兩點(diǎn).若
為銳角,則該橢圓的離心率的取值范圍是_____
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com