【題目】某品牌新款夏裝即將上市,為了對新款夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 |
|
|
| |||
售價 | 80 | 86 | 82 | 88 | 84 | 90 |
銷量 | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分別以三家連鎖店的平均售價與平均銷量為散點,求出售價與銷量的回歸直線方程
;
(2)在大量投入市場后,銷量與單價仍然服從(1)中的關(guān)系,且該夏裝成本價為40元/件,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價應(yīng)定為多少元?(保留整數(shù))
附:
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為
的函數(shù)
是奇函數(shù).
(1)求
的值;
(2)已知
在定義域上為減函數(shù),若對任意的
,不等式
為常數(shù))恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(cos2ωx-sin2ωx,sinωx),b=(
,2cosωx),設(shè)函數(shù)f(x)=a·b(x∈R)的圖象關(guān)于直線x=
對稱,其中ω為常數(shù),且ω∈(0,1).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若將y=f(x)圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>
,再將所得圖象向右平移
個單位,縱坐標(biāo)不變,得到y=h(x)的圖象,若關(guān)于x的方程h(x)+k=0在
上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點,則異面直線AE與BF所成角的余弦值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x﹣y=0垂直的切線,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+
,若g(x)有極大值點x1 , 求證:
>a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,若在定義域內(nèi)存在
,使得
成立,則稱
為函數(shù)
的局部對稱點.
(1)若
,證明:函數(shù)
必有局部對稱點;
(2)若函數(shù)
在區(qū)間
內(nèi)有局部對稱點,求實數(shù)
的取值范圍;
(3)若函數(shù)
在
上有局部對稱點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,若F(x)=f[f(x)+1]+m有兩個零點x1 , x2 , 則x1x2的取值范圍是( )
A.[4﹣2ln2,+∞)
B.(
,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),在以原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=6sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P(4,3),直線l與圓C相交于A,B兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2cos2x的圖象向右平移
個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0,
]和[2a,
]上均單調(diào)遞增,則實數(shù)a的取值范圍是( )
A.[
,
]
B.[
,
]
C.[
,
]
D.[
,
]
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com