欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
已知f(a)=
1
0
(2ax2-a2x)dx
,則f(a)的最大值為
 
分析:先根據定積分的運算公式求出f(a)的解析式,然后利用二次函數的圖象和性質即可求出f(a)的最大值.
解答:解:f(a)=
1
0
(2ax2-a2x)dx
=(
2
3
ax3
-
1
2
a2x2
)|01=
2
3
a
-
1
2
a2
∴當a=
2
3
時,f(a)取最大值,最大值為
2
9

故答案為:
2
9
點評:本題主要考查了定積分的簡單應用,以及二次函數的最值問題等有關知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(a)=
1
0
(2a2x-ax3)dx
,求f(a)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(a)=
1
0
(3a2x2-2ax)dx
,則f(a)的最小值是( 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(a)=
10
(2a2x-ax3)dx
,求f(a)的最小值.

查看答案和解析>>

科目:高中數學 來源:武清區(qū)一模 題型:填空題

已知f(a)=
10
(2ax2-a2x)dx
,則f(a)的最大值為______.

查看答案和解析>>

同步練習冊答案