欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.設f(x)是定義在正整數(shù)集上的函數(shù),且當f(k)≥2k(k≥2,k∈N*)時,總有f(k-1)≥2k-1成立,則下列命題為真命題的是( 。
A.若f(1)≥2,則f(n)≥2nB.若f(4)<16,則f(n)<2n
C.若f(4)≥16,則當n≥4時,f(n)≥2nD.若f(1)<2,則f(n)<2n

分析 根據(jù)條件的遞推關系,利用反證法進行判斷即可.

解答 解:若f(n)<2n 假設f(n)<2n,不成立,則f(n)≥2n,
根據(jù)遞推條件得f(n-1)≥2n-1成立,…f(2)≥22,f(1)≥2成立,與f(1)<2,矛盾,
故假設不成立,
故若f(1)<2,則f(n)<2n成立,即D是真命題,
故選:D

點評 本題主要考查命題的真假判斷,根據(jù)條件的遞推關系結合反證法是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知cosθ=$\frac{1}{2}$,θ為銳角.
(1)求cos2θ的值;
(2)求tan($\frac{π}{4}$-θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,若平面上點C滿足|2$\overrightarrow{OA}$+$\overrightarrow{CB}$|=$\sqrt{2}$,則|$\overrightarrow{OC}$|的取值范圍是$[2-\sqrt{2},2+\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.分析身高與體重有關系,可以用(  )
A.誤差分析B.回歸分析C.獨立性檢驗D.上述都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.直線2x+2y-1=0的傾斜角為( 。
A.45°B.60°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設p:對任意的x∈R,不等式x2-ax+a>0恒成立,q:關于x的不等式組$\left\{\begin{array}{l}{-1≤x≤a}\\{\frac{x+3}{x-2}≥0}\end{array}\right.$的解集非空,如果“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=x2+$\frac{1}{x}$的圖象在點(1,f(1))處的切線方程為( 。
A.x-y+1=0B.3x-y-1=0C.x-y-1=0D.3x-y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知O是△ABC所在平面內的任意一點,且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則S△OAB:S△ABC=(  )
A.1:2B.1:3C.2:3D.3:4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,AC交BD于點O,PD=PC=$\sqrt{2}$,PB=2,M為PB的中點.
(1)求證:BD⊥平面AMC;
(2)求二面角M-BD-C平面角的大。

查看答案和解析>>

同步練習冊答案