欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{2x-y-2≤0}\end{array}\right.$,則z=$\frac{x}{y}$的最大值為2.

分析 由約束條件作出可行域,由z=$\frac{x}{y}$的幾何意義,即可行域內(nèi)的動點與坐標(biāo)原點連線的斜率的倒數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{2x-y-2≤0}\end{array}\right.$作出可行域,

聯(lián)立$\left\{\begin{array}{l}{2x-y-2=0}\\{x+y-2=0}\end{array}\right.$,解得A($\frac{4}{3},\frac{2}{3}$),
聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-2=0}\end{array}\right.$,解得B($\frac{1}{2},\frac{3}{2}$),
∴${k}_{OA}=\frac{\frac{2}{3}}{\frac{4}{3}}=\frac{1}{2}$,${k}_{OB}=\frac{\frac{3}{2}}{\frac{1}{2}}=3$,
∴z=$\frac{x}{y}$∈[$\frac{1}{3}$,2].
則z=$\frac{x}{y}$的最大值為2.
故答案為:2.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓C1:x2+y2+2x+8y-8=0與圓C2:(x-2)2+(y-2)2=10相交于A,B兩點,則弦長|AB|=( 。
A.10B.$\sqrt{5}$C.2$\sqrt{5}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.拋物線${x^2}=\frac{1}{4}y$上的點到直線y=4x-5的距離的最小值是$\frac{{4\sqrt{17}}}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≥0}\\{x+y-6≤0}\\{x-3y-2≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個,則$\frac{y}{x-a}$的最大值是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對變量x,y有觀測數(shù)據(jù)(xi,yi)(i=1,2,3,4,5),得表1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,3,4,5),得表2.由這兩個表可以判斷( 。
表1:
x12345
y2.93.33.64.45.1
表2:
u12345
v2520211513
A.變量x與y正相關(guān),u與v正相關(guān)B.變量x與y負(fù)相關(guān),u與v正相關(guān)
C.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)D.變量x與y正相關(guān),u與v負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,a=2,b=1,sinA=$\frac{1}{3}$,則sinB=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.為了得到函數(shù)y=cos(2x-$\frac{2π}{3}$),x∈R的圖象,只要把函數(shù)y=cos2x,x∈R的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{2π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l:x-2y-1=0,直線l1過點(-1,2).
(1)若l1⊥l,求直線l1的方程;
(2)若l1∥l,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)n∈N*,數(shù)列{an}的前n項和為Sn,已知Sn+1=Sn+an+2,且a1,a2,a5成等比數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)若數(shù)列{bn}滿足$\frac{_{n}}{{a}_{n}}$=($\sqrt{2}$)${\;}^{1+{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案