【題目】橢圓C:
=1的右焦點(diǎn)F,過焦點(diǎn)F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線為l,l與l0相交于點(diǎn)M,與直線l1:x=3相交于N.
(I) 求證;直線
=1是橢圓C在點(diǎn)P處的切線;
(Ⅱ)求證:
為定值,并求此定值;
(Ⅲ)請問△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】證明:(Ⅰ)∵P(x0 , y0)在橢圓C:
上,
∴
,即
,
∴直線
過點(diǎn)P(x0 , y0),
由
,消去y,并利用
,得
,
即6x2﹣12x0x+6x02=0,即6(x﹣x0)2=0,∴x=x0 ,
∴直線
=1與橢圓C在點(diǎn)P處有且僅有一個(gè)交點(diǎn),
綜上,直線
是橢圓C在點(diǎn)P處的切線.
(Ⅱ)在
中,令x=1,得y=
,∴M(1,
),
在
中,令x=3,得y=
,∴N(3,
),
又F(1,0),∴|FM|=|
|=2|
|,
|FN|=
=2
=2
=2
,
∴
=
為定值.
解:(Ⅲ)在直線
中,令y=0,得x=
,
∴切線l與x軸的交點(diǎn)為G(
,0),
S△ONP=
=
= ![]()
=
|
||
|
=
|
||
|
= ![]()
=|
|=
,
S△ONP=
=
=
=
,
令3﹣x0=
,由﹣
,得
,且t
,
且
=
=
=
=
,
∴當(dāng)t=
,x0=1時(shí),△ONP(O為坐標(biāo)原點(diǎn))的面積是存在最小值{S△ONP}min=
,
此時(shí)P(1,
).![]()
【解析】(Ⅰ)推導(dǎo)出直線
過點(diǎn)P(x0 , y0),由
及
,得
,由此能證明直線
是橢圓C在點(diǎn)P處的切線.(Ⅱ)在
中,令x=1,M(1,
),令x=3,得N(3,
),由此求出|FM|,|FN|,由此能證明
為定值.(Ⅲ)求出切線l與x軸的交點(diǎn)為G(
,0),推導(dǎo)出S△ONP=
=
,令3﹣x0=
,利用配方法能求出△ONP的面積的最小值及對應(yīng)的P點(diǎn)坐標(biāo).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽.a,b∈R,若此函數(shù)同時(shí)滿足:
①當(dāng)a+b=0時(shí),有f(a)+f(b)=0;
②當(dāng)a+b>0時(shí),有f(a)+f(b)>0,
則稱函數(shù)f(x)為Ω函數(shù).
在下列函數(shù)中:
①y=x+sinx;
②y=3x﹣(
)x;
③y=
是Ω函數(shù)的為 . (填出所有符合要求的函數(shù)序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
分別是雙曲線E:
的左、右焦點(diǎn),P是雙曲線上一點(diǎn),
到左頂點(diǎn)的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)
時(shí),
的面積為
,求此雙曲線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , a4+a7=20,對任意的k∈N都有Sk+1=3Sk+k2 .
(I) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}定義如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通項(xiàng)公式及{(﹣1)m﹣1bm}的前2m項(xiàng)和T2m .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實(shí)根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)競賽中,30名參賽學(xué)生的成績(百分制)的莖葉圖如圖所示:若將參賽學(xué)生按成績由高到低編為1﹣30號,再用系統(tǒng)抽樣法從中抽取6人,則其中抽取的成績在[77,90]內(nèi)的學(xué)生人數(shù)為( ) ![]()
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在高二年級實(shí)行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個(gè)學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計(jì)如表:
課程 | 數(shù)學(xué)1 | 數(shù)學(xué)2 | 數(shù)學(xué)3 | 數(shù)學(xué)4 | 數(shù)學(xué)5 | 合計(jì) |
選課人數(shù) | 180 | 540 | 540 | 360 | 180 | 1800 |
為了了解數(shù)學(xué)成績與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取了10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機(jī)抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為X,選擇數(shù)學(xué)1的人數(shù)為Y,設(shè)隨機(jī)變量ξ=X﹣Y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線
:
的準(zhǔn)線
與
軸交于橢圓
:
的右焦點(diǎn)
,
為
的左焦點(diǎn).橢圓的離心率為
,拋物線
與橢圓
交于
軸上方一點(diǎn)
,連接
并延長交
于點(diǎn)
,
為
上一動(dòng)點(diǎn),且在
,
之間移動(dòng).
(1)當(dāng)
時(shí),求
的方程;
(2)若
的邊長恰好是三個(gè)連續(xù)的自然數(shù)。求
到直線
距離的最大值以及此時(shí)
的坐標(biāo).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱A1B1的中點(diǎn),則直線AE與平面BDD1B1所成角的正弦值 . ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com