【題目】在Rt△ABC中,CA=CB=2,M,N是斜邊AB上的兩個動點(diǎn),且MN=
,則
的取值范圍為 .
【答案】[
,2]
【解析】解:以C為坐標(biāo)原點(diǎn),CA為x軸建立平面坐標(biāo)系,
則A(2,0),B(0,2),
∴AB所在直線的方程為:
,則y=2﹣x,
設(shè)M(a,2﹣a),N(b,2﹣b),且0≤a≤2,0≤b≤2不妨設(shè)a>b,
∵M(jìn)N=
,
∴(a﹣b)2+(b﹣a)2=2,
∴a﹣b=1,
∴a=b+1,
∴0≤b≤1
∴
=(a,2﹣a)(b,2﹣b)
=2ab﹣2(a+b)+4
=2(b2﹣b+1),0≤b≤1
∴當(dāng)b=0或b=1時有最大值2;
當(dāng)b=
時有最小值
∴
的取值范圍為[
,2]
所以答案是[
,2]
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測評價機(jī)制,激勵學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)期開展覆蓋本校各年級學(xué)生的《標(biāo)準(zhǔn)》測試工作,并根據(jù)學(xué)生每個學(xué)期總分評定等級.某校決定針對高中學(xué)生,每學(xué)期進(jìn)行一次體質(zhì)健康測試,以下是小明同學(xué)六個學(xué)期體質(zhì)健康測試的總分情況.
學(xué)期 | 1 | 2 | 3 | 4 | 5 | 6 |
總分 | 512 | 518 | 523 | 528 | 534 | 535 |
(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)
說明
與
的線性相關(guān)程度,并用最小二乘法求出
關(guān)于
的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));
(2)在第六個學(xué)期測試中學(xué)校根據(jù) 《標(biāo)準(zhǔn)》,劃定540分以上為優(yōu)秀等級,已知小明所在的學(xué)習(xí)小組10個同學(xué)有6個被評定為優(yōu)秀,測試后同學(xué)們都知道了自己的總分但不知道別人的總分,小明隨機(jī)的給小組內(nèi)4個同學(xué)打電話詢問對方成績,優(yōu)秀的同學(xué)有
人,求
的分布列和期望.
參考公式:
,
;
相關(guān)系數(shù)
;
參考數(shù)據(jù):
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的命題是( )
A.若存在
,當(dāng)
時,有
,則說函數(shù)
在區(qū)間
上是增函數(shù):
B.若存在
(
,
,
、
),當(dāng)
時,有
,則說函數(shù)
在區(qū)間
上是增函數(shù);
C.函數(shù)
的定義域為
,若對任意的
,都有
,則函數(shù)
在
上一定是減函數(shù):
D.若對任意
,當(dāng)
時,有
,則說函數(shù)
在區(qū)間
上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點(diǎn).
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為
,求
的值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當(dāng)a=﹣
時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時,若y=f(x)圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是奇函數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)解不等式f(-m2+2m-1)+f(m2+3)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當(dāng)a=﹣
時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時,若y=f(x)圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域為[m,n]時,其值域為[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當(dāng)k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數(shù)m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數(shù)k的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com