設
是定義在
的可導函數(shù),且不恒為0,記
.若對定義域內(nèi)的每一個
,總有
,則稱
為“
階負函數(shù) ”;若對定義域內(nèi)的每一個
,總有
,則稱
為“
階不減函數(shù)”(
為函數(shù)
的導函數(shù)).
(1)若
既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)
的取值范圍;
(2)對任給的“2階不減函數(shù)”
,如果存在常數(shù)
,使得
恒成立,試判斷
是否為“2階負函數(shù)”?并說明理由.
(1)![]()
(2)所有滿足題設的
都是“2階負函數(shù)”
【解析】
試題分析:解:(1)依題意,
在
上單調(diào)遞增,
故
恒成立,得
,
2分
因為
,所以
.
4分
而當
時,
顯然在
恒成立,
所以
.
6分
(2)①先證
:
若不存在正實數(shù)
,使得
,則
恒成立.
8分
假設存在正實數(shù)
,使得
,則有
,
由題意,當
時,
,可得
在
上單調(diào)遞增,
當
時,
恒成立,即
恒成立,
故必存在
,使得
(其中
為任意常數(shù)),
這與
恒成立(即
有上界)矛盾,故假設不成立,
所以當
時,
,即
;
13分
②再證
無解:
假設存在正實數(shù)
,使得
,
則對于任意
,有
,即有
,
這與①矛盾,故假設不成立,
所以
無解,
綜上得
,即
,
故所有滿足題設的
都是“2階負函數(shù)”.
16分
考點:新定義
點評:主要是考查了新定義的運用,以及函數(shù)與方程的運用,屬于中檔題。
科目:高中數(shù)學 來源: 題型:
| lim |
| n→∞ |
| f(x+2)-2 |
| 2x |
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市高三第三次調(diào)研測試數(shù)學試卷(解析版) 題型:解答題
設
是定義在
的可導函數(shù),且不恒為0,記
.若對定義域內(nèi)的每一個
,總有
,則稱
為“
階負函數(shù)”;若對定義域內(nèi)的每一個
,總有
,
則稱
為“
階不減函數(shù)”(
為函數(shù)
的導函數(shù)).
(1)若
既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)
的取值范圍;
(2)對任給的“2階不減函數(shù)”
,如果存在常數(shù)
,使得
恒成立,試判斷
是否為“2階負函數(shù)”?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省寧波市五校高三適應性考試文科數(shù)學試卷(解析版) 題型:選擇題
設
是定義在
上可導函數(shù)且滿足
對任意的正數(shù)
,若
則下列不等式恒成立的是
A、
B、
C、
D、![]()
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省模擬題 題型:單選題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com