欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.設(shè)F1,F(xiàn)2是橢圓$\frac{x^2}{4}+{y^2}=1$的兩個(gè)焦點(diǎn),點(diǎn)P在橢圓上,且F1P⊥PF2,則△F1PF2的面積為1.

分析 由已知得|PF1|+|PF2|=4,|F1F2|=2$\sqrt{3}$,由勾股定理得|PF1|•|PF2|=2,由此能求出△F1PF2的面積.

解答 解:∵F1,F(xiàn)2是橢圓$\frac{x^2}{4}+{y^2}=1$的兩個(gè)焦點(diǎn),點(diǎn)P在橢圓上,且F1P⊥PF2,
∴|PF1|+|PF2|=4,|F1F2|=2$\sqrt{3}$,
∴|PF1|2+|PF2|2+2|PF1|•|PF2|=16,
∴|F1F2|2+2|PF1|•|PF2|=16,
∴12+2|PF1|•|PF2|=16,
∴2|PF1|•|PF2|=4,∴|PF1|•|PF2|=2,
∴△F1PF2的面積S=$\frac{1}{2}$|PF1|•|PF2|=$\frac{1}{2}×2$=1.
故答案為:1.

點(diǎn)評(píng) 本題考查三角形的面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意橢圓定義、勾股定理的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知1<x<2,化簡$\sqrt{{x}^{2}-2x+1}$+$\sqrt{4-4x+{x}^{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=-2cos($\frac{x}{2}$+$\frac{π}{3}$)在區(qū)間($\frac{28}{5}$π,a]上是單調(diào)函數(shù),則實(shí)數(shù)a的最大值為( 。
A.$\frac{17π}{3}$B.C.$\frac{20π}{3}$D.$\frac{22π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓$\frac{{x}^{2}}{9}$+$\frac{2{y}^{2}}{9}$=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P,B在橢圓上,且在x軸上方,$\overrightarrow{BP}$=$\overrightarrow{DA}$.
(1)求直線BD的方程;
(2)已知拋物線C:x2=2py(p>0)過點(diǎn)P,點(diǎn)Q是拋物線C上的動(dòng)點(diǎn),設(shè)點(diǎn)Q到點(diǎn)A的距離為d1,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為d2,求d1+d2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列曲線的標(biāo)準(zhǔn)方程:
(1)與橢圓x2+4y2=16有相同焦點(diǎn),過點(diǎn)p($\sqrt{5}$,$\sqrt{6}$),求此橢圓標(biāo)準(zhǔn)方程;
(2)求以原點(diǎn)為頂點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且焦點(diǎn)在直線3x-4y-12=0的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.以橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)F1,F(xiàn)2為直徑的圓若和橢圓有交點(diǎn),則橢圓離心率的取值范圍是( 。
A.$[\frac{{\sqrt{2}}}{2},1)$B.$(\frac{{\sqrt{2}}}{2},1)$C.$[\frac{{\sqrt{3}}}{2},1)$D.$(\frac{{\sqrt{3}}}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.P為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上異于左右頂點(diǎn)A1,A2的任意一點(diǎn),則直線PA1與PA2的斜率之積為定值-$\frac{^{2}}{{a}^{2}}$,將這個(gè)結(jié)論類比到雙曲線,得出的結(jié)論為:P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上異于左右頂點(diǎn)A1,A2的任意一點(diǎn),則( 。
A.直線PA1與PA2的斜率之和為定值$\frac{{a}^{2}}{^{2}}$
B.直線PA1與PA2的斜率之積為定值$\frac{{a}^{2}}{^{2}}$
C.直線PA1與PA2的斜率之和為定值$\frac{^{2}}{{a}^{2}}$
D.直線PA1與PA2的斜率之積為定值$\frac{^{2}}{{a}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知過點(diǎn)A(0,2)的直線l與橢圓C:$\frac{{x}^{2}}{3}$+y2=1交于P,Q兩點(diǎn).
(Ⅰ)若直線l的斜率為k,求k的取值范圍;
(Ⅱ)若以PQ為直徑的圓經(jīng)過點(diǎn)E(1,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=x3ax,其中a>0且a≠1,若φ(x)=$\frac{f'(x)}{a^x}$是區(qū)間(0,2)上的增函數(shù).
(Ⅰ)求a的最小值;
(Ⅱ)當(dāng)a取得最小值時(shí),證明:對(duì)于任意的0<x1<x2,當(dāng)x1+x2=6時(shí),有f(x1)<f(x2).

查看答案和解析>>

同步練習(xí)冊答案