分析 根據(jù)向量的模長=$\sqrt{{x}^{2}+{y}^{2}}$可得答案.在根據(jù)向量加減的運算求出$\overrightarrow{AC}$,可得|$\overrightarrow{AC}$|,即可求出三角形的面積.
解答 解:向量$\overrightarrow{AB}$=(cos18°,cos72°),$\overrightarrow{BC}$=(2cos63°,2cos27°),
則$|{\overrightarrow{AB}}|$=c=$\sqrt{co{s}^{2}18°+co{s}^{2}72°}=1$,
$|{\overrightarrow{BC}}|$=a=$\sqrt{4co{s}^{2}63°+4co{s}^{2}27°}=\sqrt{4}=2$,
∵$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$=(2cos63°+cos18°,2cos27°+cos72°)
可得|$\overrightarrow{AC}$|=b=$\sqrt{(2cos63°+cos18°)^{2}+(2cos27°+cos72°)^{2}}$)=$\sqrt{5+2\sqrt{2}}$
由余弦定理,可得cosB=-$\frac{\sqrt{2}}{2}$,則sinB=$\frac{\sqrt{2}}{2}$
則△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{\sqrt{2}}{2}$.
故答案為:1,2,$\frac{\sqrt{2}}{2}$.
點評 本題考查了向量的模長的計算和向量加減的運算,以及三角形面積的求法.屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,$\frac{1}{4}$) | B. | (2,+∞) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,2)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,e-1) | B. | (0,e-1) | C. | (e-1,+∞) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 5或-3 | B. | 2或6 | C. | 5或3 | D. | $\sqrt{5}$或$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
| 題號 | 1 | 2 | 3 | 4 | 5 |
| 考前預(yù)估難度Pi | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
| 題號 學生編號 | 1 | 2 | 3 | 4 | 5 |
| 1 | × | √ | √ | √ | √ |
| 2 | √ | √ | √ | √ | × |
| 3 | √ | √ | √ | √ | × |
| 4 | √ | √ | √ | × | × |
| 5 | √ | √ | √ | √ | √ |
| 6 | √ | × | × | √ | × |
| 7 | × | √ | √ | √ | × |
| 8 | √ | × | × | × | × |
| 9 | √ | √ | √ | × | × |
| 10 | √ | √ | √ | √ | × |
| 題號 | 1 | 2 | 3 | 4 | 5 |
| 實測答對人數(shù) | |||||
| 實測難度 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com