【題目】已知圓
.
(1)若直線
過點
且被圓
截得的弦長為2,求直線
的方程;
(2)從圓
外一點
向圓
引一條切線,切點為
為坐標(biāo)原點,滿足
,求點
的軌跡方程及
的最小值.
【答案】(1)x=-2或3x-4y+6=0(2)2x-4y+3=0,![]()
【解析】
(1)⊙C:x2+y2+2x﹣4y+3=0,化為標(biāo)準(zhǔn)方程,求出圓心C,半徑r.分類討論,利用C到l的距離為1,即可求直線l的方程;
(2)設(shè)P(x,y).由切線的性質(zhì)可得:CM⊥PM,利用|PM|=|PO|,可得3x+4y﹣12=0,求|PM|的最小值,即求|PO|的最小值,即求原點O到直線2x﹣4y+3=0的距離.
解:(1) (1)x2+y2+2x-4y+3=0可化為(x+1)2+(y-2)2=2,
當(dāng)直線l的斜率不存在時,其方程為x=-2,
易求直線l與圓C的交點為A(-2,1),B(-2,3),|AB|=2,符合題意;
當(dāng)直線l的斜率存在時,設(shè)其方程為y=k(x+2),即kx-y+2k=0,
![]()
則圓心C到直線l的距離
,
解得
,
所以直線l的方程為3x-4y+6=0
綜上,直線l的方程為x=-2或3x-4y+6=0
(2) 如圖,PM為圓C的切線,連接MC,PC,則CM⊥PM,
所以△PMC為直角三角形,
所以|PM|2=|PC|2-|MC|2
設(shè)P(x,y),由(1)知C(-1,2),|MC|=
,
因為|PM|=|PO|,所以(x+1)2+(y-2)2-2=x2+y2,
化簡得點P的軌跡方程為2x-4y+3=0
求|PM|的最小值,即求|PO|的最小值,也即求原點O到直線2x-4y+3=0的距離,
代入點到直線的距離公式可求得|PM|的最小值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+
),則下面結(jié)論正確的是( )
A. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
B. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
C. 把C1上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
D. 把C1上各點的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義域為
的奇函數(shù).
(1)求證:函數(shù)
在
上是增函數(shù);
(2)不等式
對任意的
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
右焦點
,離心率為
,過
作兩條互相垂直的弦
,設(shè)
中點分別為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線
必過定點,并求出此定點坐標(biāo).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
能表示成一個奇函數(shù)
和一個偶函數(shù)
的和.
(1)請分別求出
與
的解析式;
(2)記
,請判斷函數(shù)
的奇偶性和單調(diào)性,并分別說明理由.
(3)若存在
,使得不等式
能成立,請求出實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的最小值;
(2)若
對于任意
恒成立,求
的取值范圍;
(3)若
,求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的
,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:
甲說:“是
或
作品獲得一等獎”;
乙說:“
作品獲得一等獎”;
丙說:“
,
兩項作品未獲得一等獎”;
丁說:“是
作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com