欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.將“丹、東、市”填入如圖所示的4×4小方格內(nèi),每格內(nèi)只填入一個(gè)漢字,且任意兩個(gè)漢字既不同行也不同列,則不同的填寫方法有( 。
A.288B.144C.576D.96

分析 由題意知本題用分步計(jì)數(shù)原理,先從16個(gè)格子中任選一格放一個(gè)漢字,3個(gè)漢字既不同行也不同列,剩下的只有9個(gè)格子可以放,只有4個(gè)格子可以放,根據(jù)分步計(jì)數(shù)原理得到結(jié)果.

解答 解:由題意知本題用分步計(jì)數(shù)原理,
第一步先從16個(gè)格子中任選一格放一個(gè)漢字有16中方法,
第二步3個(gè)棋子既不同行也不同列,剩下的只有9個(gè)格子可以放有9種方法,
第三步只有4個(gè)格子可以放,有4種方法,
由分步計(jì)數(shù)原理知共有16×9×4=576,
故選:C.

點(diǎn)評(píng) 本題應(yīng)用計(jì)數(shù)原理解決,必須且只需連續(xù)完成這3個(gè)步驟,這件事才算完成.用兩個(gè)計(jì)數(shù)原理解決計(jì)數(shù)問題時(shí),最重要的是在開始計(jì)算之前要進(jìn)行仔細(xì)分析要完成的“一件事”是什么,可以“分類”還是需要“分步”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$tanθ=\frac{1}{3}$,則$sin({\frac{3}{2}π+2θ})$的值為( 。
A.$-\frac{4}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)$a={2^{\frac{1}{3}}},b={log_4}3,c={log_8}5$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在正方體ABCD-A1B1C1D1中.
求證:
(1)A1C⊥BD;
(2)平面AB1D1∥平面BC1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下面說法不正確的選項(xiàng)( 。
A.函數(shù)的單調(diào)區(qū)間可以是函數(shù)的定義域
B.函數(shù)的多個(gè)單調(diào)增區(qū)間的并集也是其單調(diào)增區(qū)間
C.具有奇偶性的函數(shù)的定義域定關(guān)于原點(diǎn)對(duì)稱
D.關(guān)于原點(diǎn)對(duì)稱的圖象一定是奇函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=a-\frac{1}{x}$是定義在(0,+∞)上的函數(shù).
(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若函數(shù)y=f(x)在[m,n]上的值域是[2m,2n](m<n),求實(shí)數(shù)a的取值范圍;
(3)若不等式x2|f(x)|≤1對(duì)$x∈[{\frac{1}{3},\frac{1}{2}}]$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:今有芻童,下廣三丈,袤四丈,上袤二丈,無廣,高一丈,問:積幾何?其意思是說:“今有底面為矩形的屋脊?fàn)钚w,下底面寬3丈,長4丈;上棱長2丈,高一丈.問它的體積是多少?”已知一丈為10尺,現(xiàn)將該楔體的三視圖給出如右圖所示,其中網(wǎng)格紙上小正方形的邊長為1,則該楔體的體積為( 。
A.5000立方尺B.5500立方尺C.6000立方尺D.6500立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.i表示虛數(shù)單位,則1+i1+i2+…+i2014=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD,E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.
(Ⅰ)證明:CD⊥平面PAD;
(Ⅱ)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案