【題目】選修4﹣4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點A的極坐標為
,直線l的極坐標方程為
,且點A在直線l上.
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數(shù)方程為
,試判斷直線l與圓C的位置關系.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 已知a1=1,
,n∈N* .
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,以
軸為始邊做兩個銳角
,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為![]()
![]()
(1)求
的值; (2)求
的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
,曲線
在點
處的切線方程為
.
(1)求
,
的值;
(2)若
,求函數(shù)
的單調(diào)區(qū)間;
(3)設函數(shù)
,且
在區(qū)間
內(nèi)存在單調(diào)遞減區(qū)間,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣經(jīng)濟最近十年穩(wěn)定發(fā)展,經(jīng)濟總量逐年上升,下表是給出的部分統(tǒng)計數(shù)據(jù):
序號 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
經(jīng)濟總量 | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,記序號為
,請直接寫出
與
的關系式;
(2)利用所給數(shù)據(jù)求經(jīng)濟總量
與年份
之間的回歸直線方程
;
(3)利用(2)中所求出的直線方程預測該縣2018年的經(jīng)濟總量.
附:對于一組數(shù)據(jù)
,
其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,單位圓
上存在兩點
,滿足
均與
軸垂直,設
與
的面積之和記為
.
![]()
若
,求
的值;
若對任意的
,存在
,使得
成立,且實數(shù)
使得數(shù)列
為遞增數(shù)列,其中
求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com