【題目】已知![]()
(1)求
的最小值以及取得最小值時(shí)
的值.
(2)若方程
在
上有兩個(gè)根,求
的取值范圍.
【答案】(1)
;(2)![]()
【解析】
(1)將函數(shù)變形后,利用基本不等式求解最小值及取等號時(shí)x的值.
(2)利用(1)所得結(jié)論,結(jié)合函數(shù)在區(qū)間
單調(diào)性和取值范圍,可得k的取值范圍為(
,3].
(1)
,已知
,則x-1>0,
,
故
,
當(dāng)且僅當(dāng)
時(shí)等號成立,解得x=
,
即
的最小值是
,取得最小值時(shí)
=
.
(2)由(1)知,f(x)在
上最小值為
,取最小值時(shí)x=
,
根據(jù)函數(shù)單調(diào)性定義,設(shè)1<x1<x2<
,
f(x1)-f(x2)=
,
由0<x1-1<x2-1<
知, 0<
<2,則
,則f(x1)-f(x2)>0,
即f(x)在
上單調(diào)減函數(shù),同理可得f(x)在
上單調(diào)增函數(shù),
易得f(3)=3,且f(x)=3,可解得x=2或x=3,且x=2
,
結(jié)合函數(shù)的單調(diào)性,故方程
在
上有兩個(gè)根,則k的取值范圍為(
,3].
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對一切正整數(shù)n,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱錐P﹣ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連接PE并延長交AB于點(diǎn)G.![]()
(1)證明:G是AB的中點(diǎn);
(2)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實(shí)數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為( )
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)在5秒內(nèi)的任何時(shí)刻,兩條不相關(guān)的短信機(jī)會均等地進(jìn)入同一部手機(jī),若這兩條短信進(jìn)入手機(jī)的時(shí)間之差小于2秒,手機(jī)就會受到干擾,則手機(jī)受到干擾的概率為_________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=loga(x+1),g(x)=loga(1﹣x),a>0且a≠1,則使f(x)﹣g(x)>0成立的x的集合是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤是100(5x+1﹣
)元.
(1)寫出生產(chǎn)該產(chǎn)品t(t≥0)小時(shí)可獲得利潤的表達(dá)式;
(2)要使生產(chǎn)該產(chǎn)品2 小時(shí)獲得的利潤不低于3000元,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程為y=3x+1,y=f(x)在x=-2處有極值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩個(gè)向量
=(λ+2,λ2﹣cos2α)和
=(m,
+sinα),其中λ,m,α為實(shí)數(shù).若
=2
,則
的取值范圍是( )
A.[﹣1,6]
B.[﹣6,1]
C.(﹣∞,
]
D.[4,8]
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com