設(shè)函數(shù)
(其中
).
(Ⅰ)當
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當
時,求函數(shù)
在
上的最大值
.
(Ⅰ)函數(shù)
的遞減區(qū)間為
,遞增區(qū)間為
,
.
(Ⅱ)函數(shù)
在
上的最大值
.
解析試題分析:(Ⅰ)通過“求導(dǎo)數(shù)、求駐點、討論導(dǎo)數(shù)的正負、確定函數(shù)的單調(diào)區(qū)間”,本題利用“表解法”,直觀,易于理解.
(Ⅱ)求函數(shù)的最值,通過“求導(dǎo)數(shù)、求駐點、討論導(dǎo)數(shù)的正負、確定函數(shù)的極值、比較區(qū)間端點函數(shù)值”等步驟,不斷地構(gòu)造函數(shù)加以轉(zhuǎn)化,是解答本題的關(guān)鍵.
試題解析:
(Ⅰ)當
時,
,![]()
令
,得
,
2分
當
變化時,
的變化如下表:
右表可知,函數(shù)![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
極大值 ![]()
極小值 ![]()
的遞減區(qū)間為
,遞增區(qū)間為
,
.
6分
(Ⅱ)
,
令
,得
,
, 7分
令
,則![]()
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實數(shù)
的取值范圍;
(3)是否存在最小的正整數(shù)
,使得當
時,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,且在
時函數(shù)取得極值.
(1)求
的單調(diào)增區(qū)間;
(2)若
,
(Ⅰ)證明:當
時,
的圖象恒在
的上方;
(Ⅱ)證明不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
在
處的切線與
軸平行.
(1)求
的值和函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的圖象與拋物線
恰有三個不同交點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
,若
在點
處的切線斜率為
.
(Ⅰ)用
表示
;
(Ⅱ)設(shè)
,若
對定義域內(nèi)的
恒成立,求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定義域內(nèi)既有極大值又有極小值,求實數(shù)
的取值范圍;
(3)是否存在最小的正整數(shù)
,使得當
時,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)當
時判斷
的單調(diào)性;
(2)若
在其定義域為增函數(shù),求正實數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,當
時,若
,總有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com