已知
為橢圓
的左,右焦點(diǎn),
為橢圓上的動(dòng)點(diǎn),且
的最大值為1,最小值為-2.
(I)求橢圓
的方程;
(II)過點(diǎn)
作不與
軸垂直的直線
交該橢圓于
兩點(diǎn),
為橢圓的左頂點(diǎn)。試判斷
的大小是否為定值,并說明理由.
(I)
(II)定值
.
【解析】
試題分析:(I)M是橢圓上的點(diǎn),
可以轉(zhuǎn)化為關(guān)于
的二次函數(shù),利用二次函數(shù)求最值,可求得橢圓方程中的參數(shù)
和
;(II)利用直線與圓錐曲線相交的一般方法,將直線方程與橢圓方程聯(lián)立方程組,利用韋達(dá)定理,求
,繼而判定是否為定值.
試題解析:(I)
,設(shè)
,則
,因?yàn)辄c(diǎn)
在橢圓上,則
,
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091900351032958579/SYS201309190036110298233648_DA.files/image014.png">,所以當(dāng)
時(shí),
取得最小值
,當(dāng)
時(shí),
取得最大值
,從而求得
,故橢圓的方程為
;
(II)設(shè)直線
的方程為
,
聯(lián)立方程組可得
,化簡得:
,
設(shè)
,則
,又
,
,由
得
,
所以
,所以
,所以
為定值.
考點(diǎn): 1、待定系數(shù)法求橢圓方程; 2、二次函數(shù)求最值 ; 3、直線與圓錐曲線相交的綜合應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| y2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| PA |
| AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系
中,已知橢圓
的離心率e=
,左右兩個(gè)焦分別為
.過右焦點(diǎn)
且與
軸垂直的
直線與橢圓
相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 設(shè)橢圓
的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足
,
(
)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓
上. ![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系
中,已知橢圓
的離心率e=
,左右兩個(gè)焦分別為
.過右焦點(diǎn)
且與
軸垂直的
直線與橢圓
相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 設(shè)橢圓
的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足
,
(
)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓
上. ![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知橢圓
的方程為
,雙曲線
的左、右焦
點(diǎn)分別是
的左、右頂點(diǎn),而
的左、右頂點(diǎn)分別是
的左、右焦點(diǎn).
(1)求雙曲線
的方程;
(2)若直線
與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求
的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com