分析 (Ⅰ)先求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)通過討論a的范圍,得到函數(shù)f(x)的單調(diào)性,求出區(qū)間上的最大值和最小值,進(jìn)而求出g(t)的表達(dá)式即可.
解答 解:(Ⅰ)f′(x)=x2+(1-a)x-a=(x+1)(x-a),又a>0,
∴當(dāng)x<-1時(shí),f′(x)>0,f(x)單調(diào)遞增;
當(dāng)-1<x<a時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x>a時(shí),f′(x)>0,f(x)單調(diào)遞增.
所以f(x)的單調(diào)增區(qū)間為:(-∞,-1),(a,+∞);單調(diào)減區(qū)間為:(-1,a).
(Ⅱ)由(Ⅰ)得:0<a<3時(shí):
f(x)在[0,a)遞減,在(a,3]遞增,
∴m(t)=f(x)min=f(a)=-$\frac{1}{6}$a3-$\frac{1}{2}$a2-a,
而f(0)=-a,f(3)=$\frac{27}{2}$-$\frac{17}{2}$a,
若f(0)>f(3),即-a>$\frac{27}{2}$-$\frac{17}{2}$a,解得:a>$\frac{27}{15}$,
∴$\frac{27}{15}$<a<3時(shí):M(t)=f(0)=-a,
∴g(t)=M(t)-m(t)=-a+$\frac{1}{6}$a3+$\frac{1}{2}$a2+a=$\frac{1}{6}$a3+$\frac{1}{2}$a2,
0<a≤$\frac{27}{15}$時(shí):f(3)≥f(0),
M(t)=f(3)=$\frac{27}{2}$-$\frac{17}{2}$a,
∴g(t)=M(t)-m(t)=$\frac{27}{2}$-$\frac{17}{2}$a+$\frac{1}{6}$a3+$\frac{1}{2}$a2+a=$\frac{1}{6}$a3+$\frac{1}{2}$a2-$\frac{15}{2}$a+$\frac{27}{2}$,
a≥3時(shí):f(x)在[0,3]遞減,
∴M(t)=f(x)max=f(0)=-a,m(t)=f(x)min=f(3)=$\frac{27}{2}$-$\frac{17}{2}$a,
∴g(t)=M(t)-m(t)=-a-$\frac{27}{2}$+$\frac{17}{2}$a=$\frac{15a}{2}$-$\frac{17}{2}$,
綜上g(t)=$\left\{\begin{array}{l}{{\frac{1}{6}a}^{3}+{\frac{1}{2}a}^{2}-\frac{15}{2}a+\frac{27}{2},0<a≤\frac{27}{15}}\\{{\frac{1}{6}a}^{3}+{\frac{1}{2}a}^{2},\frac{27}{15}<a<3}\\{\frac{15a}{2}-\frac{17}{2},a≥3}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查函數(shù)閉區(qū)間上的最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $({1,\frac{π}{4}})$ | B. | $({\frac{1}{2},\frac{π}{4}})$ | C. | $({\sqrt{2},\frac{π}{4}})$ | D. | $({2,\frac{π}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (2,1) | B. | (1,2) | C. | (1,-2) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com