【題目】已知函數(shù)f(x)=(2﹣a)lnx+
+2ax(a≤0).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a<0時(shí),討論f(x)的單調(diào)性;
(3)若對(duì)任意的a∈(﹣3,﹣2),x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:依題意知f(x)的定義域?yàn)椋?,+∞),
當(dāng)a=0時(shí),f(x)=2lnx+
,f′(x)=
﹣
=
,
令f′(x)=0,解得x=
,
當(dāng)0<x<
時(shí),f′(x)<0;
當(dāng)x≥
時(shí),f′(x)>0
又∵f(
)=2ln
=2﹣2ln2
∴f(x)的極小值為2﹣2ln2,無(wú)極大值.
(2)解:f′(x)=
﹣
+2a=
,
當(dāng)a<﹣2時(shí),﹣
<
,
令f′(x)<0 得 0<x<﹣
或x>
,
令f′(x)>0 得﹣
<x<
;
當(dāng)﹣2<a<0時(shí),得﹣
>
,
令f′(x)<0 得 0<x<
或x>﹣
,
令f′(x)>0 得
<x<﹣
;
當(dāng)a=﹣2時(shí),f′(x)=﹣
≤0,
綜上所述,當(dāng)a<﹣2時(shí)f(x),的遞減區(qū)間為(0,﹣
)和(
,+∞),遞增區(qū)間為(﹣
,
);
當(dāng)a=﹣2時(shí),f(x)在(0,+∞)單調(diào)遞減;
當(dāng)﹣2<a<0時(shí),f(x)的遞減區(qū)間為(0,
)和(﹣
,+∞),遞增區(qū)間為(
,﹣
).
(3)解:由(2)可知,當(dāng)a∈(﹣3,﹣2)時(shí),f(x)在區(qū)間[1,3]上單調(diào)遞減,
當(dāng)x=1時(shí),f(x)取最大值;
當(dāng)x=3時(shí),f(x)取最小值;
|f(x1)﹣f(x2)|≤f(1)﹣f(3)=(1+2a)﹣[(2﹣a)ln3+
+6a]=
﹣4a+(a﹣2)ln3,
∵(m+ln3)a﹣ln3>|f(x1)﹣f(x2)|恒成立,
∴(m+ln3)a﹣2ln3>
﹣4a+(a﹣2)ln3
整理得ma>
﹣4a,
∵a<0,∴m<
﹣4恒成立,
∵﹣3<a<﹣2,∴﹣
<
﹣4<﹣
,
∴m≤﹣
.
【解析】(1)當(dāng)a=0時(shí),f(x)=2lnx+
,求導(dǎo),令f′(x)=0,解方程,分析導(dǎo)數(shù)的變化情況,確定函數(shù)的極值;(2)當(dāng)a<0時(shí),求導(dǎo),對(duì)導(dǎo)數(shù)因式分解,比較兩根的大小,確定函數(shù)f(x)單調(diào)區(qū)間;(3)若對(duì)任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求函數(shù)f(x)的最大值和最小值,解不等式,可求實(shí)數(shù)m的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間
內(nèi),(1)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞增;(2)如果
,那么函數(shù)
在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)
的極值的方法是:(1)如果在
附近的左側(cè)
,右側(cè)
,那么
是極大值(2)如果在
附近的左側(cè)
,右側(cè)
,那么
是極小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐
中,
面
,
是平行四邊形,
,
,點(diǎn)
為棱
的中點(diǎn),點(diǎn)
在棱
上,且
,平面
與
交于點(diǎn)
,則異面直線
與
所成角的正切值為__________.
【答案】![]()
【解析】![]()
延長(zhǎng)
交
的延長(zhǎng)線與點(diǎn)Q,連接QE交PA于點(diǎn)K,設(shè)QA=x,
由
,得
,則
,所以
.
取
的中點(diǎn)為M,連接EM,則
,
所以
,則
,所以AK=
.
由AD//BC,得異面直線
與
所成角即為
,
則異面直線
與
所成角的正切值為
.
【題型】填空題
【結(jié)束】
17
【題目】在極坐標(biāo)系中,極點(diǎn)為
,已知曲線
:
與曲線
:
交于不同的兩點(diǎn)
,
.
(1)求
的值;
(2)求過(guò)點(diǎn)
且與直線
平行的直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f1(x)=
;f2(x)=(x﹣1)
;f3(x)=loga(x+
),(a>0,a≠1);f4(x)=x(
),(x≠0),下面關(guān)于這四個(gè)函數(shù)奇偶性的判斷正確的是( 。
A.都是偶函數(shù)
B.一個(gè)奇函數(shù),一個(gè)偶函數(shù),兩個(gè)非奇非偶函數(shù)
C.一個(gè)奇函數(shù),兩個(gè)偶函數(shù),一個(gè)非奇非偶函數(shù)
D.一個(gè)奇函數(shù),三個(gè)偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1和C2的參數(shù)方程分別是
(t是參數(shù))和
(φ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;
(2)射線OM:θ=α
與曲線C1的交點(diǎn)為O,P,與曲線C2的交點(diǎn)為O,Q,求|OP|·|OQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
sinωx﹣cosωx+m(ω>0,x∈R,m是常數(shù))的圖象上的一個(gè)最高點(diǎn)
,且與點(diǎn)
最近的一個(gè)最低點(diǎn)是
.
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且
ac,求函數(shù)f(A)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰梯形ABCD中,E、F分別是CD、AB的中點(diǎn),CD=2,AB=4,AD=BC=
.沿EF將梯形AFED折起,使得∠AFB=60°,如圖.
![]()
(1)若G為FB的中點(diǎn),求證:AG⊥平面BCEF;
(2)求二面角C-AB-F的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用[x]表示不超過(guò)x的最大整數(shù),例如[3]=3,[1.2]=1,[﹣1.3]=﹣2.已知數(shù)列{an}滿足a1=1,an+1=an2+an , 則[
+
+…+
]= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱AB的中點(diǎn)為P,若光線從點(diǎn)P出發(fā),依次經(jīng)三個(gè)側(cè)面BCC1B1 , DCC1D1 , ADD1A1反射后,落到側(cè)面ABB1A1(不包括邊界),則入射光線PQ與側(cè)面BCC1B1所成角的正切值的范圍是( ) ![]()
A.(
,
)
B.(
,4)
C.(
,
)
D.(
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
為何值時(shí),
軸為曲線
的切線;
(2)用
表示
中的最小值,設(shè)函數(shù)
,討論
零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com