【題目】(2016·哈爾濱高二檢測)如圖,下列四個幾何體中,它們的三視圖(正視圖、俯視圖、側(cè)視圖)有且僅有兩個相同,而另一個不同的兩個幾何體是________.
![]()
(1)棱長為2的正方體 (2)底面直徑和高均為2的圓柱
![]()
(3)底面直徑和高
均為2的圓錐
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運動員每次投籃命中的概率為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示沒有命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )
A. 0.35 B. 0.25
C. 0,20 D. 0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2015高考天津,文20】已知函數(shù)![]()
(I)求
的單調(diào)區(qū)間;
(II)設(shè)曲線
與
軸正半軸的交點為P,曲線在點P處的切線方程為
,求證:對于任意的正實數(shù)
,都有
;
(III)若方程
有兩個正實數(shù)根
且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司試銷某種“上海世博會”紀念品,每件按30元銷售,可獲利50%,設(shè)每件紀念品的成本為a元.
(1)試求a的值;
(2)公司在試銷過程中進行了市場調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件售價x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷售利潤為W(元),求每天銷售利潤W(元)與每件售價x(元)之間的函數(shù)解析式;當(dāng)每件售價為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(Ⅰ)若曲線
上點
處的切線過點
,求函數(shù)
的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)
在
上無零點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014福建,文22】已知函數(shù)
(
為常數(shù))的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求
的值及函數(shù)
的極值;
(2)證明:當(dāng)
時,![]()
(3)證明:對任意給定的正數(shù)
,總存在
,使得當(dāng)
時,恒有![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆云南省云南師范大學(xué)附屬中學(xué)高三高考適應(yīng)性月考(五)文數(shù)】已知函數(shù)
.
(1)若曲線
在點
處的切線斜率為1,求函數(shù)
的單調(diào)區(qū)間;
(2)若
時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知動點M到點
的距離等于M到點
的距離的
倍.
(1)求動點M的軌跡C的方程;
(2)若直線
與軌跡C沒有交點,求
的取值范圍;
(3)已知圓
與軌跡C相交于
兩點,求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個)分析,你認為選派哪位學(xué)生參加合適?請說明理由
參考公式:![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com