欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.在△ABC中,角A、B、C所對的邊分別為a、b、c,若b=1,$\frac{1}{2}sinB=cos({B+C})sinC$,則當角B取最大值時,△ABC的周長為( 。
A.3B.$2+\sqrt{2}$C.$2+\sqrt{3}$D.$3+\sqrt{2}$

分析 根據(jù)題意由正弦定理得出$\frac{1}{2}$×1=cos(B+C)•c,cosA<0,A為鈍角,cosAcosC≠0;
由sinB=sin(A+C)=sinAcosC+cosAsinC=-2cosAsinC得出tanA=-3tanC,且tanC>0;
由tanB=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$=$\frac{2}{\frac{1}{tanC}+3tanC}$≤$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$求出B取得最大值$\frac{π}{6}$;
由此求出a、b、c的值,得出△ABC的周長.

解答 解:△ABC中,b=1,$\frac{1}{2}sinB=cos({B+C})sinC$,
∴$\frac{1}{2}$×1=cos(B+C)•c,即cosA=-$\frac{1}{2c}$<0,
∴A為鈍角,∴cosAcosC≠0;
由sinB=sin(A+C)=sinAcosC+cosAsinC=-2cosAsinC,
可得tanA=-3tanC,且tanC>0,
∴tanB=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$=$\frac{-(-2tanC)}{1+{3tan}^{2}C}$
=$\frac{2}{\frac{1}{tanC}+3tanC}$≤$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
當且僅當tanC=$\frac{\sqrt{3}}{3}$時取等號;
∴B取得最大值$\frac{π}{6}$時,c=b=1,C=B=$\frac{π}{6}$;
∴A=$\frac{2π}{3}$,a2=b2+c2-2bccosA=3,
∴a=$\sqrt{3}$;
∴三角形的周長為a+b+c=2+$\sqrt{3}$.
故選:C.

點評 本題考查了正弦定理、和差公式、基本不等式的應用問題,是綜合性題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知A為銳角△ABC的內角,且 sinA-2cosA=a(a∈R).
(Ⅰ)若a=-1,求tanA的值;
(Ⅱ)若a<0,且函數(shù)f(x)=(sinA)•x2-(2cosA)•x+1在區(qū)間[1,2]上是增函數(shù),求sin2A-sinA•cosA的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.將y=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的圖象向右平移φ(0<φ<π)個單位得到函數(shù)y=2sinx(sinx-cosx)-1的圖象,則φ=$\frac{13π}{24}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知命題p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦點在x軸上的橢圓,命題q:(m-1)x2+(m-3)y2=1表示雙曲線.若p∨q為真命題,則實數(shù)m的取值范圍是(1,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列有關命題的說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.命題“$?{x_0}∈R,x_0^2+{x_0}+1<0$”的否定是“?x∈R,x2+x+1<0”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設i為虛數(shù)單位,則復數(shù)$\frac{3+2i}{i-1}$的虛部是( 。
A.$-\frac{5}{2}i$B.$-\frac{5}{2}$C.$-\frac{1}{2}i$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.f(x)是定義在R上函數(shù),滿足f(x)=f(-x)且x≥0時,f(x)=x3,若對任意的x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,則實數(shù)t的取值范圍是t≤-3或t≥1或t=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.求值:$\frac{cos27°-\sqrt{2}sin18°}{cos63°}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于實數(shù)a,b,c,下列結論中正確的是(  )
A.若a>b,則ac2>bc2B.若a>b>0,則$\frac{1}{a}$>$\frac{1}$
C.若a<b,則a2<b2D.若ab>0,a>b則$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

同步練習冊答案