【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00﹣22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:
休閑方式 | 看電視 | 看書 | 合計(jì) |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計(jì) | 20 | 60 | 80 |
(1)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時(shí)間段居民的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X.求X的數(shù)學(xué)期望和方差.
P(X2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附:X2=
.
【答案】
(1)解:根據(jù)樣本提供的2×2列聯(lián)表得:X2=
≈8.889>6.635;
所以有99%的把握認(rèn)為“在20:00﹣22:00時(shí)間段居民的休閑方式與性別有關(guān).
(2)解:由題意得:X~B(3,
),所以E(X)=3×
=
,D(X)=3×
×
=
.
【解析】(1)根據(jù)樣本提供的2×2列聯(lián)表,得當(dāng)H0成立時(shí),K2≥6.635的概率約為0.01,由此能推導(dǎo)出有99%的把握認(rèn)為“在20:00﹣22:00時(shí)間段的休閑方式與性別有關(guān)系.(2)由題意得:X~B(3,
),由此能求出X的數(shù)學(xué)期望和方差.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,左、右頂點(diǎn)分別為
為直徑的圓O過橢圓E的上頂點(diǎn)D,直線DB與圓O相交得到的弦長為
.設(shè)點(diǎn)
,連接PA交橢圓于點(diǎn)C.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)設(shè)
,試討論
單調(diào)性;
(2)設(shè)
,當(dāng)
時(shí),任意
,存在
,使
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,底面
為平行四邊形,
,
,
,
點(diǎn)在底面
內(nèi)的射影
在線段
上,且
,
,
為
的中點(diǎn),
在線段
上,且
.
![]()
(Ⅰ)當(dāng)
時(shí),證明:平面
平面
;
(Ⅱ)當(dāng)平面
與平面
所成的二面角的正弦值為
時(shí),求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an﹣2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)函數(shù)f(x)=(
)x , 數(shù)列{bn}滿足條件b1=2,f(bn+1)=
,(n∈N*),若cn=
,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F. ![]()
(1)證明 PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求VB﹣EFD .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程
=1表示焦點(diǎn)在y軸上的橢圓;命題q:雙曲線
﹣
=1的離心率e∈(1,2).若命題p、q有且只有一個(gè)為真,求m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com