(本小題滿分12分)
如圖,已知在坐標(biāo)平面xOy內(nèi),M、N是x軸上關(guān)于原點(diǎn)O對(duì)稱的兩點(diǎn),P是上半平面內(nèi)一點(diǎn),△PMN的面積為
,點(diǎn)A的坐標(biāo)為(1+
),
=m·
(m為常數(shù)),![]()
![]()
![]()
![]()
(1)求以M、N為焦點(diǎn)且過點(diǎn)P的橢圓方程;
(2)過點(diǎn)B(-1,0)的直線l交橢圓于C、D兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)B、E分
的比分別為λ1、λ2,求λ1+λ2的值。
解:(1)設(shè)M(-c,0),N(c,0)(c>0),P(x0,y0),則
=(2c,0)·(x0,y0)=2cx0,
2cx0=2c,故x0=1. ①
又∵S△PMN=
(2c)|y0|=
,y0=
.
②
∵
=(x0+c,y0),
=(1+
),由已知(x0+c,y0)=m(1+
),即
.
故
(x0+c)=(1+
)y0. ③
將①②代入③,
(1+c)=(1+
)·
,c2+c-(3+
)=0,(c-
)(c+
+1)=0,
∴c=
,y0=
.
設(shè)橢圓方程為
=1(a>b>0).
∵a2=b2+3,P(1,
)在橢圓上,
∴
=1.故b2=1,a2=4.
∴橢圓方程為
+y2=1.
6分
(2)①當(dāng)l的斜率不存在時(shí),l與x=-4無(wú)交點(diǎn),不合題意.
![]()
②當(dāng)l的斜率存在時(shí),設(shè)l方程為y=k(x+1),
代入橢圓方程
+y2=1,
化簡(jiǎn)得(4k2+1)x2+8k2x+4k2-4=0. 8分
設(shè)點(diǎn)C(x1,y1)、D(x2,y2),則
![]()
∵-1=
,
∴λ1=
.
9分
λ1+λ2=
[2x1x2+5(x1+x2)+8],
而2x1x2+5(x1+x2)+8=2·
+5·
(8k2-8-40k2+32k2+8)=0,
∴λ1+λ2=0. 12分
22、(文)解:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1=2an-4-2an-1+4,
即得an=2an-1,
當(dāng)n=1時(shí),a1=S1=2a1-4=4,∴an=2n+1. 3分
∴bn+1=2n+1+2bn.∴
=1.
∴{
}是以1為首項(xiàng),以1為公差的等差數(shù)列.
∴
=1+(n-1)×1=n∴bn=n·2n.
6分
(2)Tn=1·2+2·22+…+n·2n, ①
2Tn=1·22+2·23+…+(n-1)·2n+n·2n+1, ②
①-②,得-Tn=2+22+23+…+2n-n·2n+1=
n·2n+1,
∴Tn=(n-1)·2n+1+2. 12分
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com